- De Morgan’sche Gesetze
-
Die De Morgan’schen Gesetze (oft auch De Morgan’sche Regeln) sind zwei grundlegende Regeln für logische Aussagen. Sie wurden nach dem Mathematiker Augustus De Morgan benannt, obwohl sie bereits dem mittelalterlichen Logiker Wilhelm von Ockham bekannt waren. Sie gelten in allen Booleschen Algebren. Insbesondere sind sie in der Aussagenlogik und der Mengenlehre bedeutsam. In der Technik sind sie bedeutsam für die Erstellung von Verriegelungen und Programmen.
Inhaltsverzeichnis
Gesetze
Sie lauten in der Logik:
In der Mathematik findet man zahlreiche unterschiedliche Darstellungen der De Morganschen Gesetze der Aussagenlogik:
- bzw. mit anderer Notation:
Die Gültigkeit der De Morganschen Gesetze kann mithilfe von Wahrheitstabellen bewiesen werden.
Ihre Entsprechung in der Mengenlehre lautet (dabei sind A das Komplement von A, das Symbol für den Schnitt zweier Mengen und das Symbol für die Vereinigung zweier Mengen):
Die Regeln lassen sich auch für Verknüpfungen beliebig vieler Elemente erweitern. So gilt für jede beliebige endliche, abzählbare oder auch nicht abzählbare Indexmenge I:
- und .
Folgerungen
Eine Konjunktion (UND-Verknüpfung) lässt sich mithilfe des De Morganschen Gesetzes durch drei Negationen und einer Disjunktion (NICHT- beziehungsweise ODER-Verknüpfungen) darstellen:
Entsprechend lässt sich eine Disjunktion durch drei Negationen und eine Konjunktion darstellen:
Anwendung
Die De Morganschen Gesetze haben wichtige Anwendungen in der diskreten Mathematik, der Elektrotechnik, der Physik und der Informatik. Die De Morganschen Gesetze werden häufig in der Entwicklung digitaler Schaltkreise genutzt, um die Typen verwendeter logischer Schaltelemente gegeneinander auszutauschen oder Bauteile einzusparen.
Beispiele
Beispiel in der Mengenlehre
Es soll anhand der Beziehung
die Gültigkeit der De Morganschen Regeln illustriert werden. Es sind zwei Mengen A und B gegeben, die Teilmengen einer Obermenge Ω sind. Die Grafik 1 zeigt die Lage der Mengen und ihrer Gegenmengen A und B.
In der Grafik 2 wird gezeigt, wie gebildet wird. In der Grafik 3 wird das Komplement zu dargestellt und man sieht, dass beide Mengen gleich sind.
Aufteilung der Obermenge in A und B - Eine Interpretation wäre:
In einer Abnahmeprüfung werden hochwertige Kochmesser darauf hin überprüft, ob die Schneide fehlerfrei ist (Menge A) und ob die Schneide ordnungsgemäß im Griff verankert ist (Menge B). Ein Messer wird nicht angenommen, wenn es zur Menge A oder zur Menge B oder zu beiden gehört, also wenn mindestens eine Beanstandung vorliegt: . Das Messer wird angenommen, wenn es beide Anforderungen erfüllt, wenn es also zur Menge gehört, das heißt, es wird nicht angenommen, wenn es zu gehört.
Beispiel aus dem Alltag
Angenommen, eine Person trinkt gerne Kaffee: Um nun auszudrücken, dass sie diesen immer nur schwarz und ohne Zucker trinkt, kann sie folgende Aussagen formulieren:
- Keine Milch und kein Zucker (im Kaffee), genau dann trinke ich den Kaffee.
Umgewandelt nach de Morgan:
- Milch oder Zucker (im Kaffee), genau dann trinke ich den Kaffee nicht.
Beide Aussagen sind wertgleich.
Weblinks
Wikimedia Foundation.