- Carleman-Ungleichung
-
Die Carleman-Ungleichung, benannt nach dem schwedischen Mathematiker Torsten Carleman, ist eine elementare Ungleichung der Analysis. Sie besagt, dass eine Reihe geometrischer Mittel einer Folge (ak)k durch ein konstantes Vielfaches der Reihe von oben beschränkt ist. Genauer besagt sie, dass die eulersche Zahl e die kleinste Konstante ist, die als Vielfaches diese Schranke erfüllt.
Die Carleman-Ungleichung wurde erstmals 1923 von Torsten Carleman publiziert.
Inhaltsverzeichnis
Satz
Aussage
Sei eine Folge reeller, nicht-negativer Zahlen. Bezeichne e die eulersche Zahl . Dann gilt:
- .
Dabei ist e die kleinste Zahl, die diese Aussage erfüllt.
Beweis
Wegen ist (Teleskopsumme)
und aus folgt
und das ist nach der AM-GM-Ungleichung
Varianten
Für eine Funktion f mit gilt folgende kontinuierliche Variante der Carleman-Ungleichung:
- .
Literatur
- G. H. Hardy, J. E. Littlewood, G. Pólya: Inequalities. 2nd edition. Cambridge University Press, Cambridge u. a. 1952 (2. edition, 1. paperback edition, reprinted. transferred to digital print. ebenda 2001, ISBN 0-521-35880-9).
Wikimedia Foundation.