Cauchyscher Hauptwert

Cauchyscher Hauptwert

Als cauchyschen Hauptwert (nach A. L. Cauchy) bezeichnet man im mathematischen Teilgebiet der Analysis den Wert, den man einem divergenten Integral zuordnen kann, wenn sich divergente Teile verschiedenen Vorzeichens gegenseitig aufheben.

Definition

Ist das Integral \int_a^bf(x)\,\mathrm dx

  • uneigentlich an c \in (a,b), so bezeichnet man den Grenzwert
    \lim_{\epsilon \rightarrow 0^{+}}\left(\int_a^{c-\epsilon}f(x)\,\mathrm dx+\int_{c+\epsilon}^bf(x)\,\mathrm dx\right)=\operatorname{CH}\int_a^bf(x)\,\mathrm dx
  • uneigentlich an a und/oder b, so bezeichnet man den Grenzwert
    \lim_{\epsilon \rightarrow 0^{+}}\left(\int_{a+\epsilon}^cf(x)\,\mathrm dx+\int_c^{b-\epsilon}f(x)\,\mathrm dx\right)=\operatorname{CH}\int_a^bf(x)\,\mathrm dx

als den Cauchyschen Hauptwert. Es ist auch gebräuchlich, "V.P." (aus dem Franz.: "valeur principale") oder "P.V." (aus dem Engl.: "principal value") anstatt "CH" zu schreiben.

Beispiel (CH 1/x)

Cauchyscher Hauptwert - Beispiel

Es wird das bestimmte Integral \textstyle \int_{-1}^{1} \frac{1}{x}\,\mathrm dx untersucht. Der Integrand ist für x = 0 (ein innerer Punkt des Integrationsbereichs ] − 1,1[) nicht definiert. Damit ist dieses Integral uneigentlich in 0. Die Stammfunktion des Integranden \tfrac{1}{x} ist \ln\left|x\right| (siehe Tabelle von Ableitungs- und Stammfunktionen).

\begin{align}
\Rightarrow& \int_{-1}^{1} \frac{1}{x}\,\mathrm dx = \int_{-1}^{0} \frac{1}{x}\,\mathrm dx + \int_{0}^{1} \frac{1}{x}\mathrm dx = \left[ \ln\left|x\right| \right]_{x=-1}^0 + \left[ \ln\left|x\right| \right]_{x=0}^{1}
 =& \lim_{x\rightarrow 0^{-}}\ln\left|x\right| - \ln\left|-1\right| + \ln\left|1\right| - \lim_{x\rightarrow 0^{+}}\ln\left|x\right| = -\infty - \left(-\infty\right)
\end{align}

Dieses Integral existiert also nicht als uneigentliches Riemann-Integral, der cauchysche Hauptwert beträgt jedoch 0:

\operatorname{CH}\int_{-1}^{1}\frac{1}{x}\,\mathrm dx=\lim_{\epsilon\rightarrow 0^{+}} \left(\int_{-1}^{0-\epsilon} \frac{1}{x}\,\mathrm dx + \int_{0+\epsilon}^1 \frac{1}{x}\,\mathrm dx\right)=\lim_{\epsilon\rightarrow 0^{+}}(\ln(\epsilon)-\ln(\epsilon))=0

Der Cauchy-Hauptwert ermöglicht es also einem Integral einen Wert zuzuordnen, das weder im riemannschen Sinn noch im lebesgueschen Sinn existiert.

Wenn f auf der reellen Achse stetig und nur auf einem beschränkten Intervall von Null verschieden ist, existiert also insbesondere der Ausdruck \textstyle \operatorname{CH}\int_{-\infty}^{+\infty}f(x) \frac{1}{x}\,\mathrm dx. Das heißt, dass \operatorname{CH}\tfrac{1}{x} wie die Delta-Distribution auch als Distribution verstanden werden kann.

Substitution i. Allg. nicht erlaubt

Der Hauptwert eines Integrals bleibt jedoch im Allgemeinen nicht unter Substitution invariant. Wenn man etwa die Funktion φ durch φ(x) = x3 für  x\le  0 und φ(x) = x2 für  x\ge 0 definiert, so gilt zwar nach der Substitutionsregel

 \int_{\varphi(a)}^{\varphi(b)} \frac 1t\, \mathrm dt = \int_a^b \frac{1}{\varphi(x)}\varphi'(x) \,\mathrm dx

wann immer  0<a\le b oder  a\le b<0 gilt. Für a < 0 < b ist jedoch der Hauptwert des einen Integrals eine endliche Zahl, der Hauptwert des zweiten Integrals ist aber -\infty:

 \operatorname{CH} \int_{a^3}^{b^2} \frac 1t \,\mathrm dt = \ln\biggl|\frac{b^2}{a^3} \biggr|
 \operatorname{CH} \int_a^b \frac{\varphi'(x)}{\varphi(x)}\,\mathrm dx  = \lim_{\varepsilon\to 0+} \biggl(\int_a^{-\varepsilon} \frac{3x^2}{x^3} \,\mathrm dx + \int_{\varepsilon}^b \frac{2x}{x^2}\,\mathrm dx \biggr) = \lim_{\varepsilon\to 0+}  \biggl(\ln\biggl|\frac{b^2}{a^3} \biggr| + \ln \varepsilon  \biggr)=-\infty

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Hauptwert — Dieser Artikel behandelt den Hauptwert in der Integralrechnung. Für die Bedeutung des Hauptwertes bei komplexen Logarithmen, siehe Logarithmus. Als cauchyschen Hauptwert (nach A. L. Cauchy) bezeichnet man im mathematischen Teilgebiet der Analysis …   Deutsch Wikipedia

  • Hauptwert-Integral — Dieser Artikel behandelt den Hauptwert in der Integralrechnung. Für die Bedeutung des Hauptwertes bei komplexen Logarithmen, siehe Logarithmus. Als cauchyschen Hauptwert (nach A. L. Cauchy) bezeichnet man im mathematischen Teilgebiet der Analysis …   Deutsch Wikipedia

  • Cauchy'scher Hauptwert — Dieser Artikel behandelt den Hauptwert in der Integralrechnung. Für die Bedeutung des Hauptwertes bei komplexen Logarithmen, siehe Logarithmus. Als cauchyschen Hauptwert (nach A. L. Cauchy) bezeichnet man im mathematischen Teilgebiet der Analysis …   Deutsch Wikipedia

  • Hauptwertintegral — Dieser Artikel behandelt den Hauptwert in der Integralrechnung. Für die Bedeutung des Hauptwertes bei komplexen Logarithmen, siehe Logarithmus. Als cauchyschen Hauptwert (nach A. L. Cauchy) bezeichnet man im mathematischen Teilgebiet der Analysis …   Deutsch Wikipedia

  • Distribution (Mathematik) — Eine Distribution bezeichnet im Bereich der Mathematik eine besondere Art eines Funktionals, also ein Objekt aus der Funktionalanalysis. Die Theorie der Distributionen ermöglicht es, Ableitungen für Funktionen zu bestimmen, die im klassischen… …   Deutsch Wikipedia

  • Kramers-Kronig-Relation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Relationen — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Transformation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Krönig-Relation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Distributionenableitung — Dieser Artikel erläutert die Distribution als verallgemeinerte Funktion; pfaffsche Systeme werden in der Differentialgeometrie (als eine Verallgemeinerung der exakten Differentialgleichung) auch als geometrische Distribution bezeichnet. Der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”