Kramers-Kronig-Relation

Kramers-Kronig-Relation

Die Kramers-Kronig-Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real- und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert-Transformation dar.

Inhaltsverzeichnis

Mathematische Formulierung

Sei F : \mathbb{C} \rightarrow \mathbb{C} eine meromorphe Funktion, deren Polstellen in der unteren Halbebene liegen. Dieser Forderung an die Lage der Polstellen entspricht physikalisch das sog. Kausalitätspostulat. Ferner seien \operatorname{Re}\, F|_\mathbb{R} bzw. \operatorname{Im}\, F|_\mathbb{R} Real- und Imaginärteil der Funktion F. Es sei vorausgesetzt, dass diese beiden Funktionen gerade bzw. ungerade sind. (Das bedeutet, dass F durch Fourierintegration nicht aus einer beliebigen komplexen, sondern aus einer reellen Funktion gebildet werden kann.) In der Physik betrachtet man oft statt F die Funktion F/i, wodurch sich die Voraussetzungen bzgl. gerade und ungerade vertauschen. Schließlich sei \lim_{|z| \rightarrow \infty} |F(z)| = 0. Dann gelten für x \in \mathbb{R} die folgenden, als Kramers-Kronig-Beziehungen bezeichnete Gleichungen:

\operatorname{Im}\, F(x) = -\frac{2}{\pi} \cdot \;\mathrm{CH}\, \int_{0}^{+\infty} \frac{x\cdot\operatorname{Re}\,F(t)}{t^2-x^2}\mathrm{d}t
\operatorname{Re}\, F(x) =  \frac{2}{\pi} \cdot \;\mathrm{CH}\, \int_{0}^{+\infty} \frac{t\cdot\operatorname{Im}\,F(t)}{t^2-x^2}\mathrm{d}t

CH bezeichnet den Cauchyschen Hauptwert des auftretenden Integrals.

Real- und Imaginärteil der Funktion F bedingen sich also gegenseitig, und zwar durch Integration, was vor allem in der Optik und der allgemeinen Systemtheorie (z. B. wenn F mit einer Suszeptibilität des Systems identisch ist, siehe Kausalität) vielfältige Anwendungen hat. Anwendungen finden sich aber auch in der Hochenergie-Physik ("Dispersionsrelationen" der S-Matrix).

Motivation (Ein Randwertproblem)

Auf der reellen Achse \mathbb R sei eine stetige reelle Funktion \,f vorgegeben, die analog zu \operatorname{Re}\,F als gerade vorausgesetzt werden soll. Dazu soll eine in der ganzen oberen Halbebene holomorphe komplexe(!) Funktion \,F so konstruiert werden, dass \operatorname{Re}\, F|_\mathbb{R} \stackrel{!}{=} f gilt.

Es soll also ein Randwertproblem gelöst werden, wobei im Innern des betrachteten Gebietes \,G, d.h. oberhalb von \mathbb R, wegen der Holomorphie-Bedingung die Cauchy-Riemannschen Differentialgleichungen erfüllt werden müssen und auf dem Rand, \partial G=\mathbb R\,, eine stetige reelle Funktion, f, vorgegeben ist, die dort angenommen werden soll.

Eine holomorphe Funktion kann nach dem Residuensatz dargestellt werden als:

F(z) = \frac{1}{2 \pi i} \left( \int_{HK_r} \frac{F(t)}{t - z} \mathrm{d}t + \int_{-r}^r \frac{F(t)}{t - z} \mathrm{d}t \right),

wobei HKr(0) den (positiv orientierten) Halbkreis in der oberen Halbebene mit Zentrum 0 und Radius r > 0 bezeichnet. Fällt nun F im Unendlichen schnell genug ab, so reduziert sich im Grenzübergang r \rightarrow \infty die Darstellung zu einem Integral über der reellen Achse, also:

F(z) = \frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{F(t)}{t-z} \mathrm{d}t

Im Falle \operatorname{Im}\, z = 0, und weil \,f bzw. \operatorname{Re}\,F(t) eine gerade Funktion sein soll, ergibt sich schließlich

\operatorname{Im} \, F(z) = - \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\operatorname{Re}\,F(t)}{t-z} \mathrm{d}t
 = - \frac{2}{\pi} \int_{0}^{+\infty} \frac{z \cdot \operatorname{Re}\,F(t)}{t^2-z^2} \mathrm{d}t,

wobei das auftretende Integral als Cauchyscher Hauptwert zu interpretieren ist (Singularität für t = z) und mit der Hilbert-Transformation von f übereinstimmt. Der Residuensatz wird hierbei auf den Integrationsweg [-r,z-\varepsilon] \cdot HK_\varepsilon(z) \cdot [z+\varepsilon, r] \cdot HK_r(0) angewendet. Diese Gleichung entspricht der einen Kramers-Kronig-Beziehung.

Man braucht jetzt zur Lösung des Randwertproblems nur die Beziehung \operatorname{Re}\, F|_\mathbb{R} {=} f einzusetzen.

Für ungerade Funktionen f verfährt man analog und erhält die andere Kramers-Kronig-Beziehung. Eine beliebige Funktion kann immer durch die Vorschrift \, f=f_+ + f_-, mit f_\pm (t) = \frac{1}{2}\left (f(t)\pm f(-t)\right ), in einen geraden bzw. ungeraden Anteil zerlegt werden.

Anwendungen

Die Kramers-Kronig-Beziehungen finden dort Anwendung, wo eine reelle gerade Funktion zu einer holomorphen Funktion ergänzt werden soll, was meistens der Vereinfachung der auftretenden Rechnungen dient, insbesondere bei Wellenfunktionen, also hauptsächlich in der Signalverarbeitung und in der Optik, aber auch in der Statistischen Physik im Zusammenhang mit dem Fluktuations-Dissipations-Theorem). Physikalisch wird dieses Instrument verwendet in Form einer Dispersions-Relation, die die elektromagnetische Absorption mit der Dispersion und damit mit der Brechzahl in Beziehung bringt.

Dadurch lässt sich die Kreisfrequenz-abhängige Absorption als eine Funktion der Kreisfrequenz-abhängigen Permittivität (Dielektrizitätskonstante) ε(ω) ausdrücken:

\operatorname{Re}(\varepsilon(\omega))=1+\frac{2}{\pi} \cdot \;\mathrm{CH}\, \int \limits_{0}^{\infty} {{\Omega \cdot \operatorname{Im}(\varepsilon(\Omega))} \over {\Omega^2-\omega^2}} \,\mathrm{d}\Omega

Eine alternative Betrachtungsweise ergibt sich mit dem Absorptionskoeffizienten α, der Brechzahl n und der Lichtgeschwindigkeit c:

n(\omega)=1+\frac{c}{\pi} \cdot \;\mathrm{CH}\,  \int \limits_{0}^{\infty} {{\alpha(\Omega)} \over {\Omega^2-\omega^2}} \,\mathrm{d}\Omega

Dadurch lässt sich vor allem in der nichtlinearen Optik aus einer einfachen Absorptionsmessung die komplexe Form der Brechzahl ableiten.

Literatur

  • Mansoor Sheik-Bahae: Nonlinear Optics Basics. Kramers-Kronig Relations in Nonlinear Optics, in: Robert D. Guenther (Hrsg.): Encyclopedia of Modern Optics, Academic Press, Amsterdam 2005, ISBN 0-12-227600-0

Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Kramers–Kronig relation — The Kramers–Kronig relations are mathematical properties, connecting the real and imaginary parts of any complex function which is analytic in the upper half plane. These relations are often used to relate the real and imaginary parts of response …   Wikipedia

  • Kramers-Krönig-Relation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Beziehungen — Die Kramers Kronig Beziehungen, auch Kramers Kronig Relation, setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen damit einen Spezialfall der Hilbert Transformation… …   Deutsch Wikipedia

  • Kramers-Kronig-Relationen — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Kramers-Kronig-Transformation — Die Kramers Kronig Beziehungen (nach Hendrik Anthony Kramers und Ralph Kronig) setzen Real und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen einen Spezialfall der Hilbert… …   Deutsch Wikipedia

  • Relations de kramers-kronig — En mathématiques et physique, les relations de Kramers Kronig, nommées en l honneur de Hendrik Anthony Kramers[1] et Ralph Kronig[2], décrivent la relation qui existe entre la partie réelle et la partie imaginaire de certaines fonctions complexes …   Wikipédia en Français

  • Relations de Kramers-Kronig — En mathématiques et physique, les relations de Kramers Kronig, nommées en l honneur de Hendrik Anthony Kramers[1] et Ralph Kronig[2], décrivent la relation qui existe entre la partie réelle et la partie imaginaire de certaines fonctions complexes …   Wikipédia en Français

  • Kronig — Ralph Kronig Ralph Kronig (* 3. Oktober 1904 in Dresden; † 16. November 1995 in Zürich) war ein deutscher Physiker. Er wurde für seine Entdeckung des Teilchenspins und für seine Theorie der Röntgenabsorptionsspektroskopie bekan …   Deutsch Wikipedia

  • Ralph Kronig — was a German American physicist (March 10, 1904 November 16, 1995). He is noted for the discovery of particle spin and for his theory of x ray absorption spectroscopy. His theories include the Kronig Penney model and the Kramers–Kronig… …   Wikipedia

  • Ralph Kronig — Ralph de Laer Kronig, geboren als Ralph Kronig, (* 10. März 1904 in Dresden; † 16. November 1995) war ein deutsch US amerikanischer theoretischer Physiker. Er entdeckte den Teilchenspin vor Uhlenbeck und Goudsmit, veröffentlichte dies aber nicht …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”