Finite-Differenz

Finite-Differenz

Die Finite-Differenzen-Methode ist das einfachste numerische Verfahren zur Lösung gewöhnlicher und partieller Differentialgleichungen.

Zunächst wird das Gebiet, für das die Gleichung gelten soll, in eine endliche (finite) Zahl von Gitterpunkten eines Gitters von senkrecht aufeinander stehenden Linien eingeteilt. Den Gitterpunkten entsprechen dann die Kreuzungspunkte. Die Ableitungen an den Gitterpunkten werden dann durch Differenzen approximiert (siehe dazu Numerische Differentiation). Die partiellen Differentialgleichungen werden so in ein System von Differenzengleichungen umformuliert und mittels verschiedener Algorithmen entweder implizit oder explizit gelöst.

Verfahren dieser Art finden verbreitete Anwendung bei fluiddynamischen Simulationen, zum Beispiel in der Meteorologie und der Astrophysik.

Differenzenquotient

Ein naheliegender Ansatz ist die Verwendung des Vorwärtsdifferenzenquotienten

D^+(x_0)\approx \frac{f(x_0+h)-f(x_0)}{h},

bzw. des Rückwärtsdifferenzenquotienten

D^-(x_0)\approx \frac{f(x_0)-f(x_0-h)}{h}.

Dabei ist jedoch die Näherung im Vergleich zur Auslöschung relativ schlecht. Eine bessere Näherung erhält man durch Verwendung des zentralen Differenzenquotienten

D(x_0)\approx \frac{f(x_0+h)-f(x_0-h)}{2h}.

Beispiel

Wir diskretisieren die lineare Differenzialgleichung f''(x) = 2 in Ω = [0;1] mit der Randbedingung f(0) = f(1) = 3 auf einem Gitter mit der Maschenweite  h = \frac{1}{n+1} . Zur Diskretisierung der zweiten Ableitung nehmen wir den zentralen Differenzenquotienten der zweiten Ableitung

D^+(D^-(x_0)) \approx \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}

Unser Gebiet Ω wird also im Inneren durch (n-1) Knoten diskretisiert. Wir nummerieren diese Knoten von x1 bis xn − 1 durch. Für jeden dieser Knoten müssen wir die zweite Ableitung berechnen. Wir erhalten also (n-1) Gleichungen mit (n-1) Unbekannten.

 \frac{1}{h^2}( f(x_{2}) - 2f(x_1) ) = 2 - 3\frac{1}{h^2} und
 \frac{1}{h^2}(f(x_{i+1}) - 2f(x_i) + f(x_{i-1})) = 2 für i = {2,..n − 2} und
 \frac{1}{h^2}( - 2f(x_{n-1}) + f(x_{n-2})) = 2 - 3\frac{1}{h^2}

Daraus erhalten wir ein Gleichungssystem Ax = b mit einer dünnbesetzten Matrix A. Solche Gleichungssysteme lassen sich effizient mit iterativen Lösern berechnen.

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Kubisch Hermitescher Spline — In dem mathematischen Teilgebiet der Numerik wird unter einem kubisch hermiteschen Spline (auch cSpline genannt) ein Spline verstanden der zwischen n Kontrollpunkten interpoliert. Die Kontrollpunkte sind durch n − 1 Segmente verbunden, die aus… …   Deutsch Wikipedia

  • Gießprozess-Simulation — Gießen ist sicherlich das Fertigungsverfahren mit der größten Vielfalt an Variablen. Das macht es für die Simulation umso anspruchsvoller, alle maßgeblichen Einflussgrößen mit zu berücksichtigen. Unter Gießprozess Simulation versteht man die… …   Deutsch Wikipedia

  • List of important publications in mathematics — One of the oldest surviving fragments of Euclid s Elements, found at Oxyrhynchus and dated to circa AD 100. The diagram accompanies Book II, Proposition 5.[1] This is a list of important publications in mathematics, organized by field. Some… …   Wikipedia

  • Modifizierte Wellenzahl — Die modifizierte Wellenzahl dient in der Physik der Bewertung einer Diskretisierung für eine Welle. Anhand der modifizierten Wellenzahl können wichtige numerische Eigenschaften eines Verfahrens, wie Dispersion, numerische Dämpfung oder die… …   Deutsch Wikipedia

  • Newton-Verfahren — Das Newton Verfahren, auch Newton Raphson Verfahren, (benannt nach Sir Isaac Newton 1669 und Joseph Raphson 1690) ist in der Mathematik ein Standardverfahren zur numerischen Lösung von nichtlinearen Gleichungen und Gleichungssystemen. Im Falle… …   Deutsch Wikipedia

  • Existence (Philosophy of) 1 — Philosophy of existence 1 Heidegger Jacques Taminiaux At the very outset and up to the end, the long philosophical journey of Martin Heidegger (1889–1976) remained oriented by a single question, the question of Being, the Seinsfrage. This does… …   History of philosophy

  • Georg Wilhelm Friedrich Hegel — Infobox Philosopher region = Western Philosophy era = 19th century philosophy color = #B0C4DE image caption = G.W.F. Hegel name = Georg Wilhelm Friedrich Hegel birth = August 27, 1770 (Stuttgart, Germany) death = death date and… …   Wikipedia

  • Hegel, Georg Wilhelm Friedrich — born Aug. 27, 1770, Stuttgart, Württemberg died Nov. 14, 1831, Berlin German philosopher. After working as a tutor, he was headmaster of the gymnasium at Nürnberg (1808–16); he then taught principally at the University of Berlin (1818–31). His… …   Universalium

  • Subjekt (Philosophie) — Dem Begriff Subjekt (lat. subiectum: das Daruntergeworfene; griech. hypokeimenon: das Zugrundeliegende) wurde in der Philosophiegeschichte verschiedene Bedeutungen beigemessen. Ursprünglich kennzeichnete der Begriff einen Gegenstand des Handelns… …   Deutsch Wikipedia

  • Grundwassermodell — Grundwassermodelle sind Werkzeuge zur Simulation von Strömungsvorgängen im ungesättigten oder gesättigten Bodenbereich, dem Transport von gelösten Wasserinhaltsstoffen und der Wärmeausbreitung in einem Aquifer. Ein Grundwasserströmungsmodell… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”