Gauss-Bonnet

Gauss-Bonnet

Der Satz von Gauß-Bonnet (nach Carl Friedrich Gauß und Pierre Ossian Bonnet) ist eine wichtige Aussage über Flächen, die ihre Geometrie mit ihrer Topologie verbindet, indem eine Beziehung zwischen Krümmung und Euler-Charakteristik hergestellt wird. Dieser Satz wurde unabhängig von beiden Mathematikern gefunden. Man beachte, dass auch französische Geometer ihn mit dem Namen von Gauß und Bonnet bezeichnen.

Inhaltsverzeichnis

Definitionen und Satz

Sei M eine kompakte und orientierbare zweidimensionale riemannsche Mannigfaltigkeit mit Rand \partial M. Bezeichne mit K die Gaußkrümmung in den Punkten von M und mit kg die geodätische Krümmung der Randkurve \partial M. Dann gilt

\int_M K\;dA+\int_{\partial M}k_g\;ds=2\pi\chi(M) ,

wobei χ(M) die Euler-Charakteristik von M ist.

Der Satz kann im Besonderen auf Mannigfaltigkeiten ohne Rand angewendet werden. Dann fällt der Term \int_{\partial M}k_g\;ds weg.

Erklärung des Satzes

Verzerrt man die Mannigfaltigkeit, so bleibt ihre Euler-Charakteristik unverändert, im Gegensatz zur Gaußkrümmung an den einzelnen Punkten. Der Satz sagt aus, dass das Integral über die Krümmung, also die Gesamtkrümmung, unverändert bleibt.

Beispiele

Die runde Sphäre M = S2 mit Radius 1 hat in jedem Punkt die Gauß-Krümmung 1. Das Integral über die Gauß-Krümmung entspricht also ihrer Fläche, . Andererseits ist die Euler-Charakteristik 2, da man die Sphäre als Verklebung von zwei (runden) Flächen entlang einer Kante mit einer Ecke bekommt (also 2-1+1=2).

Korollare

Theorema elegantissimum

Dieses von Gauß stammende Korollar besagt, dass die Gesamtkrümmung \int_{\Delta}K\;dA eines einfach zusammenhängenden geodätischen Dreiecks gleich dessen Winkelexzess ist. Für den Spezialfall der 2-Sphäre sieht man über die Außenwinkelsumme eines infinitesimalen (also flachen) Dreiecks von die Äquivalenz zum Satz von Gauß-Bonnet. Die Äquivalenz gilt allerdings – im zweidimensionalen Fall – auch allgemein, was mithilfe einer Triangulierung eingesehen werden kann, denn für diese gilt:

2\pi\chi=2\pi(E-K+F)=2\pi(E-\frac 32F+F)=2\pi E-\pi F=\sum\varepsilon.

Verallgemeinerungen

Der Satz lässt sich auf n Dimensionen verallgemeinern. Man kann ihn ebenfalls auf simpliziale Flächen verallgemeinern, wobei man den Winkeldefekt einer Ecke als diskrete Gausskrümmung definiert.


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gauss–Bonnet theorem — The Gauss–Bonnet theorem or Gauss–Bonnet formula in differential geometry is an important statement about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic). It is named …   Wikipedia

  • Formule de Gauss-Bonnet — En géométrie différentielle, la formule de Gauss Bonnet est une propriété reliant la géométrie (au sens de la courbure de Gauss) et la topologie (au sens de la caractéristique d Euler) des surfaces. Elle porte le nom des mathématiciens Carl… …   Wikipédia en Français

  • Generalized Gauss–Bonnet theorem — In mathematics, the generalized Gauss–Bonnet theorem (also called Chern–Gauss–Bonnet theorem) presents the Euler characteristic of a closed even dimensional Riemannian manifold as an integral of a certain polynomial derived from its curvature. It …   Wikipedia

  • Teorema de Gauss-Bonnet — Un ejemplo de región compleja donde el teorema de Gauss Bonnet puede ser aplicado. Se muestra el signo de la curvatura geodésica. El teorema de Gauss Bonnet en geometría diferencial es una proposición importante sobre superficies que conecta su… …   Wikipedia Español

  • Formule De Gauss-Bonnet — En géométrie, la formule de Gauss Bonnet est une propriété reliant la géométrie et la topologie des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d une version du théorème, mais ne la publia jamais, et… …   Wikipédia en Français

  • Formule de gauss-bonnet — En géométrie, la formule de Gauss Bonnet est une propriété reliant la géométrie et la topologie des surfaces. Elle porte le nom des mathématiciens Carl Friedrich Gauss, qui avait conscience d une version du théorème, mais ne la publia jamais, et… …   Wikipédia en Français

  • Generalized Gauss-Bonnet theorem — In mathematics, the generalized Gauss Bonnet theorem presents the Euler characteristic of a closed even dimensional Riemannian manifold as an integral of a certain polynomial derived from its curvature. It is a direct generalization of the Gauss… …   Wikipedia

  • Teorema de Gauss-Bonnet generalizado — En matemáticas, el teorema de Gauss Bonnet generalizado presenta la característica de Euler de una variedad de Riemann cerrada como integral de cierto polinomio derivado de su curvatura. Es una generalización directa del teorema de Gauss Bonnet a …   Wikipedia Español

  • Teorema de Gauss-Bonnet generalizado — En matemáticas, el teorema de Gauss Bonnet generalizado presenta la característica de Euler de una variedad de Riemann cerrada como integral de cierto polinomio derivado de su curvatura. Es una generalización directa del teorema de Gauss Bonnet a …   Enciclopedia Universal

  • Teorema de Gauss-Bonnet — El teorema de Gauss Bonnet en geometría diferencial es una proposición importante sobre superficies que conecta su geometría (en el sentido de la curvatura) con su topología (en el sentido de la característica de Euler). Supóngase que M es una… …   Enciclopedia Universal

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”