Algebraische Körpererweiterung

Algebraische Körpererweiterung

In der Algebra heißt eine Körpererweiterung \mathbb{L}/\mathbb{K} algebraisch, wenn jedes Element von \mathbb{L} algebraisch über \mathbb{K} ist, d.h. wenn jedes Element von \mathbb{L} Nullstelle eines Polynoms mit Koeffizienten in \mathbb{K} ist. Körpererweiterungen, die nicht algebraisch sind, also transzendente Elemente enthalten, heißen transzendent.

Zum Beispiel sind die Erweiterungen \mathbb{C}/\mathbb{R} und \mathbb{Q}(\sqrt{2})/\mathbb{Q} algebraisch, während \mathbb{R}/\mathbb{Q} transzendent ist.

Ist \mathbb{L} ein Oberkörper von \mathbb{K}, dann kann man \mathbb{L} als \mathbb{K}-Vektorraum auffassen und seine Dimension bestimmen. Diese Vektorraumdimension wird Grad der Körpererweiterung genannt. Je nachdem, ob dieser Grad endlich oder unendlich ist, teilt man Körpererweiterungen in endliche Erweiterungen und unendliche Erweiterungen ein. Jede transzendente Erweiterung ist unendlich; daraus folgt, dass jede endliche Erweiterung algebraisch ist.

Es gibt aber auch unendliche algebraische Erweiterungen, zum Beispiel bilden die algebraischen Zahlen eine unendliche Erweiterung von \mathbb{Q}.

Ist a algebraisch über \mathbb{K}, dann ist der Ring \mathbb{K}[a] aller Polynome in a über \mathbb{K} sogar ein Körper. \mathbb{K}[a] ist eine endliche algebraische Erweiterung von \mathbb{K}, . Solche Erweiterungen, die durch Adjunktion eines einzigen Elements entstehen, heißen einfache Erweiterungen.

Ein Körper, der keine echte algebraische Erweiterung besitzt, ist algebraisch abgeschlossen.


Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • algebraische Gleichung — algebraische Gleichung,   allgemein jede Gleichung der Form f (z1, z2,. .., zn) = 0, in der f ein Polynom, im weiteren Sinn eine ganzrationale Funktion von n …   Universal-Lexikon

  • Körpererweiterung (Mathematik) — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Körpererweiterung — In der abstrakten Algebra ist ein Unterkörper K eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Algebraische Erweiterung — In der Algebra heißt eine Körpererweiterung algebraisch, wenn jedes Element von algebraisch über ist, d.h. wenn jedes Element von Nullstelle eines Polynoms mit Koeffizienten in ist. Körpererweiterungen, die nicht algebraisch sind, also… …   Deutsch Wikipedia

  • Algebraische Unabhängigkeit — In der abstrakten Algebra ist die algebraische Unabhängigkeit eine Eigenschaft von Elementen einer transzendenten Körpererweiterung, welche besagt, dass diese Elemente keine nichttriviale Polynomgleichung mit Koeffizienten im Grundkörper erfüllen …   Deutsch Wikipedia

  • Verzweigte Körpererweiterung — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… …   Deutsch Wikipedia

  • Diskriminante (algebraische Zahlentheorie) — In der Algebraischen Zahlentheorie bezeichnet die Diskriminante ein Hauptideal in einem Ganzheitsring, welches eine zahlentheoretische Aussage über die Körpererweiterung zweier Zahlkörper macht. Inhaltsverzeichnis 1 Definition 2 Eigenschaften und …   Deutsch Wikipedia

  • Ordnung (algebraische Zahlentheorie) — In der algebraischen Zahlentheorie ist eine Ordnung des Zahlkörpers K ein Unterring von K, der (via Multiplikation) als Endomorphismenring auf bestimmten Untergruppen von K, den Gittern operiert, zugleich ist die Ordnung selbst ein spezielles… …   Deutsch Wikipedia

  • Endliche Galoiserweiterung — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

  • Erweiterungskörper — In der abstrakten Algebra ist ein Unterkörper eines Körpers L eine Teilmenge , die 0 und 1 enthält und mit den auf K eingeschränkten Verknüpfungen selbst ein Körper ist. L wird dann Oberkörper von K genannt. Das Paar L und K bezeichnet man als… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”