- IMUX
-
Ein Multiplexer (kurz: MUX) ist ein Selektionsschaltnetz in der analogen Elektronik- und Digitaltechnik, mit dem aus einer Anzahl von Eingangssignalen eines ausgewählt werden kann, etwa bei einem Speicherzugriff oder der Anwahl oder Durchschaltung analoger und digitaler Signalkanäle.
Bei zyklischem Durchlauf können mit einem Multiplexer parallele Datenströme in serielle gewandelt werden. Außerdem kann mit einem Multiplexer eine Schaltfunktion oder jeder mögliche Schaltzustand realisiert werden. Für die Signalübertragung mit Lichtleitern gibt es optische Multiplexer und Demultiplexer, die mit optischen Schaltern oder beim Wellenlängenmultiplexverfahren mit wellenlängenselektiven Elementen arbeiten. Das Gegenstück zum Multiplexer ist der Demultiplexer, mit dem die zusammengefassten Datenkanäle wieder aufgetrennt werden. Analoge Multiplexer arbeiten bidirektional, das heißt sie können auch als Demultiplexer verwendet werden.
Neben mehreren Eingängen und einem Ausgang verfügt ein Multiplexer über ein oder mehrere Steuersignale, über die festgelegt wird, welcher Eingang ausgewählt wird. Es wird derjenige Eingang zum Ausgang durchgeschaltet, der die Kennung hat, die in Form einer Dualzahl als Steuersignal anliegt. Ein parallel angesteuerter Multiplexer mit dem Bezeichnungsschlüssel n-MUX hat zum Beispiel n Steuersignale, 2n Eingänge und einen Ausgang. Die Eingänge sind meist mit den Zahlen 0 bis 2n-1 durchnummeriert.
Inhaltsverzeichnis
Bezeichnungen
In der Satellitentechnik bezeichnet MUX einen Multiplexer oder Demultiplexer. IMUX (input multiplexer) am Eingang hinter einer Empfangsantenne ist technisch ein Demultiplexer, entsprechend ein OMUX am Ausgang vor der Sendeantenne ein Multiplexer.
In der Nachrichtentechnik bezeichnet ein Multiplexer ein Gerät, das Daten- und/oder Sprachkanäle zusammenfasst und auf einer gemeinsam genutzten Leitung überträgt. Da die Daten sowohl gesendet, als auch empfangen werden, ist in der Regel auch ein Demultiplexer erforderlich (PCM30).
Einfach-Multiplexer
Der einfachste Fall ist der 2-Eingaben-Multiplexer (auch Einfach-Multiplexer kurz „1-MUX“; siehe Abbildung 1), der ein Steuersignal s0, 2 Eingänge e0 und e1 und einen Ausgang a hat. Liegt am Steuersignal s0 eine 1 an, so liefert der Ausgang a das Signal, das am Eingang e1 anliegt, andernfalls das von Eingang e0.
Schalttafel des 1-MUX s0 a 0 e0 1 e1 Datei:Mux-Aufbau DIN40900.svgDatei:Mux-Symbol DIN40900.svgAnstatt der Bezeichnung MUX wird in Datenblättern meist die allgemeinere Bezeichnung X/Y für einen Codeumsetzer verwendet. Im Weiteren wird jedoch die Bezeichnung MUX beibehalten, da diese eindeutiger ist.
Zweifach- und m-Multiplexer
Abbildung 2a zeigt den rekursiven Aufbau eines Zweifach-Multiplexers (kurz: „2-MUX“) aus 1-MUXen. Analog kann man MUXe mit noch mehr Steuersignalen und entsprechend mehr Eingängen bauen. Dabei benötigt man für die Konstruktion eines m-MUX 2m-1 MUXe mit je m Steuersignalen.
Die Zahl der Eingänge und die Kosten eines Multiplexers steigen also exponentiell mit der Anzahl seiner Steuersignale.
Multiplexer mit vielen Steuersignalen haben eine hohe Zahl von Gatter-Stufen, was zu hoher Laufzeit führt.
Datei:2-MUX Aufbau DIN40900.svgDatei:2-MUX Symbol DIN40900.svgDie Schaltfunktion eines 2-MUX lautet:
Schalttafel des 2-MUX s1 s0 a 0 0 e0 0 1 e2 1 0 e1 1 1 e3 Datei:2-MUX Aufbau2 DIN40900.svgDatei:2-MUX Symbol2 DIN40900.svgDatei:2-MUX Symbol3 DIN40900.svgBeispiel
Gegeben ist eine Schaltfunktion f(s3,s2,s1,s0), die genau dann 1 ist, wenn die Dualzahl [s3s2s1s0]2 eine Primzahl ist. So muss etwa f(0, 0, 1, 1) = 1 sein, da die Dualzahl 0011 der dezimalen 3 entspricht und 3 eine Primzahl ist (da die 1 keine Primzahl ist, sollte aus der Logik für 0 0 0 1 am Ausgang a eine 0 folgen).
Die Funktion f entspricht der folgenden Wahrheitstafel:
Dez s3 s2 s1 s0 a 0 0 0 0 0 0 1 0 0 0 1 0 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 1 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 Diese Schaltfunktion soll mit einem 4-MUX realisiert werden. Die an den Eingängen des 4-MUX anliegenden Bits kann man hierzu aus der Ergebnisspalte f der Wahrheitstafel ablesen. Der 4-MUX muss also folgendermaßen geschaltet sein:
Es ist aber auch möglich, die gleiche Funktion mit einem 3-MUX zu realisieren. Das Problem ist dabei, dass die Funktion f vier Parameter hat, aber nur drei Steuersignale zur Verfügung stehen. Man löst es, indem man den Funktionswert a in Abhängigkeit von s3 ausdrückt.
Dadurch entsteht die folgende Wahrheitstafel:
s2 s1 s0 a 0 0 0 0 0 0 1 0 0 1 0 S3 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 S3 Der 3-MUX wird also folgendermaßen angeschlossen:
Ausgänge
In CMOS-Technik werden Multiplexer dabei sowohl mit digitalen Logik-Gattern, als auch mit Analogschaltern (Transmission-Gates) ausgeführt. Bei Verwendung von Transmission-Gates kann der elektrische Strom in beide Richtungen (bidirektional) fließen, wodurch ein solcher Multiplexer — durch umgekehrte Ansteuerrichtung — auch als Demultiplexer verwendet werden kann. Ein solcher Multiplexer wird daher auch als Analog-Multiplexer/Demultiplexer bezeichnet.
Datei:Mux Funktionsprinzip.svgDie ODER-Verknüpfung am Ausgang lässt sich auch durch eine Wired-OR-Verknüpfung realisieren. Will man dabei die langen Anstiegszeiten am Ausgang verhindern kann man auch Tri-State-Gatter am Ausgang anschließen. Diese Lösung wird allerdings nicht in integrierten Schaltungen verwendet, ausgenommen in Bussystemen, bei denen die Signalquellen räumlich getrennt sind.
Multiplexer-Bausteine
Multiplexer sind im Handel als vorgefertigte IC-Bausteine erhältlich. Die wichtigsten Typen sind in der folgenden Tabelle zusammengefasst:
Gebräuchliche integrierte Multiplexer Anzahl der
EingängeTTL ECL CMOS digital analog1) 16 74LS150 4515 4067 2×8 4097 8 74LS151 10164 4512 4051 2×4 74LS153 10174 4539 4052 8×2 74LS604 4×2 74LS157 10159 4519 4066 1) Multiplexer/Demultiplexer mit Transmission-Gate Siehe auch
Wikimedia Foundation.