Intervallschachtelungsprinzip

Intervallschachtelungsprinzip

Das Intervallschachtelungsprinzip wird besonders in der Analysis in Beweisen benutzt und bildet in der Numerischen Mathematik die Grundlage für einige Lösungsverfahren.

Das Prinzip ist folgendes: Man fängt mit einem Intervall an und wählt aus diesem Intervall ein Intervall, das komplett in dem vorherigen Intervall liegt, wählt dort wieder ein Intervall heraus und so weiter. Werden die Längen der Intervalle beliebig klein, konvergiert also ihre Länge gegen Null, so gibt es genau eine reelle Zahl, die in allen Intervallen enthalten ist. Wegen dieser Eigenschaft können Intervallschachtelungen herangezogen werden, um mit ihnen die reellen Zahlen als Zahlbereichserweiterung der rationalen Zahlen zu konstruieren[1].

Inhaltsverzeichnis

Definition

Seien (an),(bn) rationale oder reelle Zahlenfolgen, (a_n)\; monoton wachsend und (b_n)\; monoton fallend, a_n \le b_n\; für alle n \in \mathbb{N}\;, und bilden die Differenzen dn = bnan eine Nullfolge, also

\lim_{n \to \infty}(b_n-a_n) = 0\;,

dann wird die Folge (J_n)_{n\in\N} oder auch \left(a_n|b_n\right)_{n\in\N}der Intervalle Jn: = [an,bn] als Intervallschachtelung bezeichnet.[2].

Konstruktion der reellen Zahlen

Es gilt nun, dass es für jede Intervallschachtelung rationaler Zahlen höchstens eine rationale Zahl s gibt, die in allen Intervallen enthalten ist, die also a_n\le s \le b_n für alle n\in\N erfüllt.[3]

Es stimmt aber nicht, dass jede Intervallschachtelung rationaler Zahlen mindestens eine rationale Zahl s enthält; um eine solche Eigenschaft zu erhalten, muss man die Menge der rationalen Zahlen zur Menge der reellen Zahlen erweitern. Dies lässt sich beispielsweise mit Hilfe der Intervallschachtelungen durchführen. Dazu sagt man, jede Intervallschachtelung definiere eine wohlbestimmte reelle Zahl, also σ: = (Jn).[4]

Die Gleichheit reeller Zahlen definiert man dann über die entsprechenden Intervallschachtelungen: \left(a_n|b_n\right)=\left(a'_n|b'_n\right) genau dann wenn stets a_n\le b'_n und a'_n\le b_n.[5].

Auf analoge Weise lassen sich die Verknüpfungen reeller Zahlen als Verknüpfungen von Intervallschachtelungen definieren; beispielsweise ist die Summe zweier reeller Zahlen als

\left(a_n|b_n\right)+\left(a'_n|b'_n\right)=\left(a_n+a'_n|b_n+b'_n\right)

definiert.[6].

Dieses so definierte System hat nun die gewünschten Eigenschaften, insbesondere gilt nun, dass jede beliebige Intervallschachtelung reeller Zahlen genau eine reelle Zahl enthält.[7].

Intervallschachtelungen sind aber nicht die einzige Möglichkeit zur Konstruktion der reellen Zahlen; insbesondere ist die Konstruktion als Äquivalenzklasse von Cauchyfolgen weiter verbreitet. Weiterhin gibt es noch die Methode der Dedekindschen Schnitte.

Weitere Anwendungen

Einzelnachweise

  1. Konrad Knopp. Theorie und Anwendung der unendlichen Reihen. 5. Auflage, Springer Verlag 1964, ISBN 3-540-03138-3.
  2. Konrad Knopp. ebenda, S 21, Definition 11
  3. Konrad Knopp. ebenda, S 22, Satz 12
  4. Konrad Knopp. ebenda, S 27, Definition 13
  5. Konrad Knopp. ebenda, S 29, Definition 14B
  6. Konrad Knopp. ebenda, S 31, Definition 16
  7. Konrad Knopp. ebenda, S 41, Satz 4

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Intervallschachtelung — Das Intervallschachtelungsprinzip wird besonders in der Analysis in Beweisen benutzt und bildet in der Numerischen Mathematik die Grundlage für einige Lösungsverfahren. Das Prinzip ist Folgendes: Man fängt mit einem Intervall an und wählt aus… …   Deutsch Wikipedia

  • Zwischenwertsatz — In der reellen Analysis ist der Zwischenwertsatz ein wichtiger Satz über den Wertebereich stetiger Funktionen. Der Zwischenwertsatz sagt aus, dass eine reelle Funktion f, die auf einem abgeschlossenen Intervall [a,b] stetig ist, jeden Wert… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”