Leptokurtisch

Leptokurtisch

Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in verschiedenen Ausprägungen mit der Standardabweichung σ(X) als:

  • Kurtosis
 \beta_2=\frac{\mu_4(X)}{\sigma^4(X)}
  • Exzess
 \gamma_2=\frac{\mu_4(X)}{\sigma^4(X)} - 3

Oft wird auch direkt die Größe γ2 als Kurtosis definiert.

Deutung

Der Exzess beschreibt die Abweichung des Verlaufs der gegebenen Wahrscheinlichkeitsverteilung zum Verlauf einer Normalverteilung. Verteilungen werden entsprechend ihres Exzesses eingeteilt in:

  • γ2 = 0: normalgipflig oder mesokurtisch. Die Normalverteilung hat die Kurtosis β2 = 3 und entsprechend den Exzess γ2 = 0.
  • γ2 > 0: steilgipflig, supergaußförmig oder leptokurtisch. Es handelt sich hierbei um im Vergleich zur Normalverteilung spitzere Verteilungen, d.h. Verteilungen mit starken Peaks.
  • γ2 < 0: flachgipflig, subgaußförmig oder platykurtisch. Man spricht von einer im Vergleich zur Normalverteilung abgeflachten Verteilung.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем написать реферат

Schlagen Sie auch in anderen Wörterbüchern nach:

  • leptokurtisch — hochgipflig …   Universal-Lexikon

  • hochgipflig — leptokurtisch * * * ∙hoch|gipf|lig <Adj.> [zu Gipfel in der landsch. Bed. „oberer (rundlicher) Teil von etw.“]: (schweiz.) stark nach oben gewölbt; mit einer hervortretenden Verzierung versehen: hatte ... viele e Metallknöpfe auf der Weste… …   Universal-Lexikon

  • Exzess (Statistik) — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Flachgipflig — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Kurtosis — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Mesokurtisch — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Platykurtisch — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Steilgipflig — Die Wölbung (auch Kurtosis oder Exzess) einer statistischen Verteilung X ist definiert als normierte Form des vierten zentralen Moments μ4(X). Sie beschreibt die „Spitzigkeit“ der Wahrscheinlichkeitsdichtefunktion. Die Wölbung gibt es in… …   Deutsch Wikipedia

  • Volax-Future — Ein Volax Future ist ein Finanzterminkontrakt auf die implizite Volatilität einer DAX Option am Geld mit drei Monaten Restlaufzeit. 1998 wurde der Volax Future als erster Terminkontrakt auf implizite Optionsvolatilitäten an der DTB (heute Eurex)… …   Deutsch Wikipedia

  • Wölbung (Statistik) — Die Wölbung oder Kurtosis (griechisch κύρτωσης kyrtōsis‚ das Krümmen, Wölben) ist eine Maßzahl für die Steilheit bzw. „Spitzigkeit“ einer (eingipfligen) Wahrscheinlichkeitsfunktion, statistischen Dichtefunktion oder Häufigkeitsverteilung.[1] …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”