Meton-Zyklus

Meton-Zyklus

Meton-Zyklus (griechisch Μέτωνος κύκλος) oder Meton-Periode (auch Enneakaidekaeteris,[1] Enneadekaeteris;[2] griechisch εννεαδεκαετηρίς: „neunzehnjährig“) bezeichnet[3]

  • ein vermutetes Kalendersystem, das die antiken griechischen Astronomen Euktemon und Meton im fünften Jahrhundert v. Chr. aufstellten, in dem 19 Jahre 6940 Tage enthielten.

Die annähernde Gleichheit der beiden astronomischen Bemessungen und ihre Länge von etwa 6940 Tagen war schon im Altertum bekannt und bei den Babyloniern die Grundlage ihres Mondkalenders.[4][5] Meton gehörte neben Euktemon zu den ersten griechischen Astronomen und vermutlich zu den ersten Griechen, die davon erfuhren. Warum spätere griechische Historiker ausschließlich seinen Namen damit in Verbindung brachten, ist nicht bekannt.[6][7] Ein neutraler Begriff ist Lunisolarzyklus.

Inhaltsverzeichnis

Geschichte

Meton als Zeitgenosse von Euktemon

Weder von Euktemon noch von Meton sind schriftliche Aufzeichnungen erhalten. Beide werden erst ab einem Jahrhundert nach ihrem Wirken vereinzelt genannt. Dabei kommt der Name Euktemons öfters vor. Meton wird im Zusammenhang mit der Feststellung der Sommersonnenwende im Jahr 432 v. Chr. und der Errichtung eines astronomischen und Wetter-Vorhersagekalenders (Parapegma) genannt. Dass beide gemeinsam arbeiteten, ist nicht sicher. Die Kenntnisse der griechischen Astronomie bis zum ersten Jahrhundert v. Chr. hat Geminos von Rhodos zusammenfassend beschrieben. Er nennt den Namen Metons nicht und führt den „neunzehnjährigen Zyklus“ in einem Kalendersystem auf „Astronomen aus der Schule des Euktemon, Philippos und Kallippos“ zurück. Die beiden letztgenannten lebten erst ein Jahrhundert nach Euktemon und Meton.

Die historischen Quellen

Im vierten Jahrhundert v. Chr. erwähnt Eudoxos von Knidos in der griechischen Literatur einen „neunzehnjährigen Zeitraum des Euktemon“. Kurze Zeit später wird Meton erstmals von Theophrastos von Eresos in diesem Zusammenhang genannt.[8] Ein Jahrhundert danach nennt Aratos von Soloi den Astronom Kallippos, der im Jahr 330 v. Chr. das „neunzehnjährige Meton-Kalendersystem“ modifizierte.[4] Philochoros berichtet, dass Meton ein Heliotropion, dass der Bestimmung der Sommersonnenwende diente, auf der Pnyx errichtete.[9] Im Eudoxus-Papyrus, der in Gizeh um 190 v. Chr. geschrieben wurde, und in den Schriften von Geminos von Rhodos, die etwa 70 v. Chr. entstanden, werden Democritus, Eudoxus, Euktemon und Kallippos genannt, aber nicht Meton.

Erst der Historiker Diodor erwähnt ein Parapegma in Verbindung der Sommersonnenwende als „neunzehnjährigen Zyklus (έννεακαιδεκαετηρίδα), das Meton, Sohn des Pausanias, einführte“.[6] Vitruv nennt unter den Astronomen, die einen mit Wettervorhersagen verbundenen Kalender (Parapegma) entwickelt hatten, neben Euktemon und Meton alle bereits erwähnten Namen.[10] Claudius Ptolemäus berichtet in seinen astronomischen Aufzeichnungen des Almagest nur einmal über einen „neunzehnjährigen Zeitraum“ mit dem Hintergrund einer von Meton und Euktemon beobachteten Sommersonnenwende.

Aus den antiken Überlieferungen geht nicht hervor, wer das Modell des „Meton-Kalendersystems“ entworfen und wie es ausgesehen hat. Oft wird eine gemeinsame Arbeit von Meton und Euktemon vermutet. Die moderne kritische Beurteilung durch Otto Neugebauer reduziert dieses Kalendersystem auf die von seinem Namenspatron gemachte Gleichsetzung von 19 Jahren mit 6.940 Tagen.[4] Meton hätte damit indirekt nur die Länge des Sonnenjahrs festgelegt, einen reinen Sonnenkalender geschaffen, damit der in seinem Parapegma enthaltene Jahreswetterbericht ewige Gültigkeit erhielte. Damit bleibt ungewiss, ob Meton die Periode von 19 Sonnenjahren beziehungsweise 6.940 Tagen überhaupt mit 235 Mondperioden gleich setzte und daraus eine Anwendung herleitete.

Die Anwendung einer Periode in der Osterrechnung (Computus), die sowohl 19 Sonnenjahre als auch 235 Mondperioden lang ist, ist dennoch unverbrüchlich mit dem Namen Metons verbunden, ungeachtet dessen, dass der astronomische Hintergrund des Meton-Zyklus schon vor Meton bekannt war und dass die Meton-Periode nicht mit 6.940 sondern seit Kallippos mit 6.939,25 Tagen gleich gesetzt wird.

Meton und die Sommersonnenwende 432 v. Chr.

Diodor schreibt, dass Meton im gleichen Jahr, als Apseudes in Athen das Amt des Archon eponymos bekleidete, auf den 13. Tag des Monats Skirophorion den Beginn seines berechneten neunzehnjährigen Kalendersystems legte. Dieser Monat war der letzte des vierten Jahres der 86. Olympiade, das von 433 bis 432 v. Chr. reichte. Claudius Ptolemäus bemerkte, dass Meton und Euktemon in diesem Zusammenhang die Sommersonnenwende im Jahre 432 v. Chr. beobachteten.[4] Im gleichen Text gibt er als Tag dafür den 21. Phamenoth im ägyptischen Kalender an. Dieser ist im julianischen Kalender der 27. Juni (22. Juni im gregorianischen Kalender) und gilt auch aus heutiger Sicht als verlässliches Datum für die Sommersonnenwende im Jahre 432 v. Chr..[11] Das Neulicht fiel auf den 16. Juni im julianischen (11. Juni im gregorianischen) Kalender. Vorausgesetzt, dass die in Athen gebrauchten Monate mit den Mondphasen übereinstimmten, hätte Meton die Sommersonnenwende einen Tag zu spät festgestellt: 1. Skirophorion am 16. Juni; 13. Skirophorion am 28. Juni (julianische Daten).

Otto Neugebauer zieht bereits aus der Nennung des 13. Skirophorion als Starttermin die Folgerung, dass Meton nicht versucht habe, einen neuen Jahreskalender zu schaffen, sondern nur einen eindeutigen Ausgangspunkt im Sonnenjahr für die Erstellung eines Parapegmas suchte.[4] Einen Jahreskalender hätte er am Tage eines neuen Mond-Monats (Neulicht) beginnen müssen. Ein solcher fiel im Jahre 432 v. Chr. nicht mit der Sommensommerwende zusammen. Den neunzehnjährigen Kalender Metons, den die Griechen gemäß Diodor[12] noch zu seiner Zeit verwendeten, hält er für dieses Parapegma.

Verteilung von 235 Mondmonaten auf 6940 Tage

Kalendermonate bestehen immer aus einer ganzen Zahl von Tagen. Monate, die den Mondphasen (mittlere Periode: etwa 29,53 Tage) folgen sollen, sind in annäherndem Wechsel 29 Tage (hohle Monate) beziehungsweise 30 Tage (volle Monate) lang. Die Meton-Periode mit 6940 Tagen lässt sich eindeutig nur aus 110 hohlen Monaten und 125 vollen Monaten zusammensetzen.[13]
Kontrollrechnung: 110·29 + 125·30 = 3190 + 3750 = 6940.
Weil die Zahl der hohlen und der vollen Monate nicht gleich ist, kommt ein regelmäßiger Wechsel in der Reihenfolge nicht in Frage. Ob die Astronomen des antiken Griechenland nach babylonischen Vorbild Normaljahre aus je sechs hohlen und sechs vollen Monaten und gelegentlich Schaltjahre mit einem zusätzlichen Monat bildeten, ist nicht bekannt. Geminus weist Euktemon folgende indirekte Methode zu, die zu einer günstigen Folge aus halben und vollen Monaten führt: Allen 235 Monaten werden zuerst formal 30 Tage zugeordnet. Die Summe ist mit 7050 Tagen um 110 Tage zu groß. Deshalb wird jeder 64. Tag der 7050 Tage übersprungen, wodurch man auf 6940 Tage kommt, und wobei meistens ein hohler einem vollen Monat folgt. Fünfzehn mal folgen zwei volle Monate aufeinander.[14] Dass dieses Vorgehen tatsächlich anwendbar gewesen wäre, wird durch zwei Arbeiten von Fotheringham (1924) und van der Waerden (1960) gestützt.[15]

Geminus berichtet aber auch, dass die Berechnungen des Euktemon nicht mit der zu seiner (Geminous') Zeit angenommenen Länge von 365,25 Tagen für das Sonnenjahr in Übereinstimmung standen, und erwähnt abschließend, dass der „fehlerhafte Überschuss später von Astronomen aus der Schule des Kallippos durch einen verbesserten neunzehnjährigen Zyklus berichtigt wurde.“[16]

Differenzen in einem neunzehnjährigen Kalendersystem zu 6940 Tagen

Berechnung mit den heutigen Werten für das Sonnenjahr und die Mondperiode (Lunation):

Sonnenjahr = 365,24220Tage
Mondperiode = 29,53059Tage

19 Kalenderjahre

\begin{matrix} 
      19\,\mathrm{Kalenderjahre} &=&  6940{,}0000\,\mathrm{Tage} \\ 
        19\,\mathrm{Sonnenjahre} &=&  6939{,}6018\,\mathrm{Tage} \\
              \mathrm{Differenz} &=&  0000{,}3982\,\mathrm{Tage}
 \end{matrix}

19 Kalenderjahre sind 0,3982 zu lang. Der Kalender geht nach etwa 48 Jahren gegenüber dem Sonnenjahr um einen Tag vor.

235 Mondmonate

\begin{matrix} 
  {}\ 235\,\mathrm{Mondmonate}  &=&  6940{,}00000\,\mathrm{Tage} \\ 
     235\,\mathrm{Mondperioden} &=&  6939{,}68865\,\mathrm{Tage} \\
            \mathrm{Differenz}  &=&  0000{,}31135\,\mathrm{Tage}
 \end{matrix}

235 Mondmonate sind 0,31135 Tage zu lang. Der Kalender geht nach etwa 755 Mondmonaten (etwa 61 Kalenderjahren) gegenüber den Mondperioden um einen Tag vor.

Ein neunzehnjähriges Kalendersystem zu 6939,75 Tagen

Ein Jahrhundert nach Meton korrigierte Kallippos indirekt die 19-Jahre-Periode auf 6939,75 Tage. Der in ganzen Tagen angegebene Kallippische Zyklus teilt 76 Jahren 27'759 Tage zu. Die erste bekannte Verwendung der darin enthaltenen Länge von 365,25 Tagen für das einzelne Jahr geschah in einem in Ägypten zur Zeit von Ptolemaios III. im dritten Jahrhundert v. Chr. kurzzeitig gebrauchten Sonnenkalender. Ob die Kenntnis der Jahrlänge von 365,25 Tagen von Kallippos übernommen wurde, ist nicht bekannt. Die Einschaltung eines Zusatztages alle vier Jahre wurde später vom Julianischen Kalender übernommen, nachdem Julius Cäsar persönlich in Ägypten davon erfahren hatte. Zur Zeit Jesus Christus' wurde in Palästina ein gebundener Mondkalender verwendet. Die Erinnerung der Christen zu Ostern, dem Tag der Auferstehung Jesus Christus', beruht auf diesem Kalender, der innerhalb des julianischen Sonnenkalenders (und des verbesserten gregorianischen Kalenders) weiter angewendet wird. Die Bindung an die Mondmonate kommt dadurch zum Ausdruck, dass der Ostersonntag dem ersten Vollmond im Frühling zu folgen hat, also im ersten Mondmonat des religiösen jüdischen Kalenders liegt. Bei der Bestimmung des jährlich im julianischen (heute im gregorianischen) Kalender anderen Oster-Termins spielt die 19-Jahre-Periode eine wesentliche Rolle.

Berechnung mit den heutigen Werten für das Sonnenjahr und die Mondperiode (Lunation):

Sonnenjahr = 365,24220Tage
Mondperiode = 29,53059Tage

19 Kalenderjahre

\begin{matrix} 
      19\,\mathrm{Kalenderjahre} &=&  6939{,}7500\,\mathrm{Tage} \\ 
        19\,\mathrm{Sonnenjahre} &=&  6939{,}6018\,\mathrm{Tage} \\
              \mathrm{Differenz} &=&  0000{,}1482\,\mathrm{Tage}
 \end{matrix}

19 Kalenderjahre sind 0,1482 zu lang. Der Kalender geht nach etwa 128 Jahren gegenüber dem Sonnenjahr um einen Tag vor.

Diese Differenz wurde bei der gregorianischen Kalenderreform nahezu beseitigt, indem im Kalender im Schnitt alle 133,3333 Jahre ein Schalttag ausfällt (Sonnengleichung).

235 Mondmonate

\begin{matrix} 
  {}\ 235\,\mathrm{Mondmonate}  &=&  6939{,}75000\,\mathrm{Tage} \\ 
     235\,\mathrm{Mondperioden} &=&  6939{,}68865\,\mathrm{Tage} \\
            \mathrm{Differenz}  &=&  0000{,}06135\,\mathrm{Tage}
 \end{matrix}

235 Mondmonate sind 0,06135 Tage zu lang. Der Kalender geht nach etwa 3'830 Mondmonaten (etwa 310 Kalenderjahren) gegenüber den Mondperioden um einen Tag vor.

Diese Differenz wurde bei der gregorianischen Kalenderreform nahezu beseitigt, indem auch bestimmt wurde, bei der Osterrechnung im Schnitt alle 312,5 Jahre einmal einen Mondmonat um einen Tag kürzer anzusetzen (Mondgleichung).

Differenz zwischen 19 Sonnenjahren und 235 Mondperioden

Berechnung mit den heutigen Werten für das Sonnenjahr und die Mondperiode (Lunation):

Sonnenjahr   =  365,24219\ Tage
Mondperiode   =  29,53059\ Tage


\begin{matrix} 
     19\,\mathrm{Sonnenjahre}  &=&       6939{,}60161\,\mathrm{Tage} \\ 
    235\,\mathrm{Mondperioden} &=&       6939{,}68865\,\mathrm{Tage} 
 \end{matrix}

Differenz

 \begin{align}
  0{,}08704\,\mathrm{Tage} &=& 2{,}08896\,\mathrm {Stunden} &=& 2\,\mathrm {Stunden} \dots 5\,\mathrm {Minuten} \dots 20\,\mathrm {Sekunden}
  \end{align}

Siehe auch

Literatur

  • F. K. Ginzel: Handbuch der mathematischen und technischen Chronologie. Das Zeitrechnungswesen der Völker. Band 2: Zeitrechnung der Juden, der Naturvölker, der Römer und Griechen sowie Nachträge zum 1. Bande. (Nachdruck Originalausgabe Leipzig 1906). s. n., Innsbruck 2007 ISBN 3-226-00428-X (Austrian literature online 54).
  • Helmut Groschwitz: Mondzeiten. Zu Genese und Praxis moderner Mondkalender. Waxmann, Münster u. a. 2008, ISBN 978-3-8309-1862-2 (Regensburger Schriften zur Volkskunde – vergleichenden Kulturwissenschaft 18), (Zugleich: Regensburg, Univ., Diss., 2005).
  • Otto Neugebauer, William Kendrick Pritchett: The calendars of Athens. Harvard University Press, Cambridge MA 1947.
  • Otto Neugebauer: The Metonic and the Callippic Cycle. In: O. Neugebauer: A history of ancient mathematical astronomy. Springer, Berlin u. a. 1975, ISBN 3-540-06995-X (Studies in the History of Mathematics and Physical Sciences 1), (Nachdruck. ebenda 2006).
  • W. Kendrick Pritchett: Athenian Calendars and Ekklesias. Gieben, Amsterdam 2001, ISBN 9-0506-3258-0.
  • Carl Christian Redlich: Der Astronom Meton und sein Cyclus. Meißner, Hamburg 1864, online.

Anmerkungen und Einzelnachweise

  1. Alfred Fleckeisen: Jahrbücher für classische Philologie. Teubner, Leipzig 1860, S. 345
  2. Wilhelm Friedrich Rinck: Die Religion der Hellenen, aus den Mythen, den Lehren der Philosophen, und dem Kultus. Meyer und Zeller, Zürich 1855, S. 35.
  3. In den historischen Wissenschaften ist die strenge naturwissenschaftliche Unterscheidung zwischen einem Zyklus und der Zeitdauer (Periode) zwischen zyklischen Ereignissen generell nicht üblich.
  4. a b c d e Otto Neugebauer: The Metonic and the Callippic Cycle. S. 622-623.
  5. Heinz Zemanek “Kalender und Chronologie” Oldenbourg 1990, S.43: Der Mondzirkel war den babylonischen Astronomen schon ab etwa 747 v. Chr. bekannt.
  6. a b Diodor: XII 36,2.
  7. Da sich nach Aussage Metons die Sterne nach 19 Jahren wieder treffen, berichtete Diodor etwa vier Jahrhunderte nach Euktemon und Meton, dass die 19-Jahre-Periode auch „Jahr des Meton“ genannt wurde.
  8. Theophrastos von Eresos: Über Wetterzeichen, 4.
  9. Felix Jacoby: Die Fragmente der griechischen Historiker, 328.
  10. Vitruv: Zehn Bücher über Architektur, 9, 6, 3.[1]
  11. Friedrich Karl Ginzel: Handbuch der mathematischen und technischen Chronologie, Bd. 2. S. 392–394.
  12. Diodor, Bibliothéke historiké‘, 12, 36, 1.
  13. Evans, J. and Berggren, J. L. "Geminus, Introduction to the Phenomena" Princeton University Press 2006, VIII 52, Seite 184
  14. Evans, J. and Berggren, J. L. "Geminus, Introduction to the Phenomena" Princeton University Press 2006, VIII 53 bis 55, Seite 184
  15. Van der Waerden, B. L. "Greek astronomical calendars. II. Callippos and his calendar." Archive for History of Exact Sciences 29 (2), 1984, Seiten 121 bis 124
  16. Evans, J. and Berggren, J. L. "Geminus, Introduction to the Phenomena" Princeton University Press 2006, VIII

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Meton-Zyklus (Astronomie) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Der Begriff Meton Zyklus geht auf den griechischen Astronom Meton… …   Deutsch Wikipedia

  • Meton-Zyklus (Kalender) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Der Begriff Meton Zyklus (früher auch Meton Periode) wurde vom… …   Deutsch Wikipedia

  • Meton — (altgr. Μέτων), der Sohn von Pausanias, war ein Astronom im antiken Griechenland. Er lebte im fünften Jahrhundert v. Chr. in Athen. Auf seinen Namen geht der Begriff Meton Zyklus zurück. Inhaltsverzeichnis 1 Herkunft 2 Metons Wirken 3 We …   Deutsch Wikipedia

  • Meton von Athen — Meton war vermutlich der erste bedeutende Astronom im antiken Griechenland. Er lebte im fünften Jahrhundert v. Chr. in Athen. Um seine astronomischen Beobachtungen datieren zu können, soll er einen eigenen Lunisolarkalender eingerichtet haben,… …   Deutsch Wikipedia

  • Meton-Periode — Der Begriff Meton Zyklus wird für unterschiedliche Rechnungsgrößen verwendet: als astronomische Berechnungseinheit, siehe Meton Zyklus (Astronomie) als Kalenderform, benannt nach dem griechischen Astronomen Meton, siehe Meton Zyklus (Kalender)… …   Deutsch Wikipedia

  • Meton — Meton, aus Athen, um 432 v.Chr., Begründer des Metonschen Zyklus (s. Zyklus) …   Kleines Konversations-Lexikon

  • Meton — Meton, ein Athener, der 433 v. Chr. den nach ihm benannten Zyklus vorschlug, der 125 volle und 111 leere Monate (zu 30 und 29 Tagen) oder 12 gemeine Jahre zu 12 Monaten und 7 Schaltjahre zu 13 Monaten umfaßte, so daß im Mittel ein Monat = 29,532… …   Meyers Großes Konversations-Lexikon

  • Meton — Mẹton,   griechischer Mathematiker und Astronom der 2. Hälfte des 5. Jahrhunderts v. Chr.; auf seiner Erkenntnis, dass 235 Mondmonate fast genau 19 tropische Jahre ergeben (metonischer Zyklus), beruhte der bis 46 v. Chr. gültige griechische… …   Universal-Lexikon

  • Kallipischer Zyklus (Astronomie) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Der Begriff Meton Zyklus geht auf den griechischen Astronom Meton… …   Deutsch Wikipedia

  • Kallippischer Zyklus (Astronomie) — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung. Der Begriff Meton Zyklus geht auf den griechischen Astronom Meton… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”