Möbiusband

Möbiusband

Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Sie ist nicht orientierbar, dass heißt, man kann nicht zwischen unten und oben oder zwischen innen und außen unterscheiden.

Es wurde im Jahr 1858 unabhängig voneinander von dem Göttinger Mathematiker und Physiker Johann Benedict Listing und dem Leipziger Mathematiker und Astronomen August Ferdinand Möbius beschrieben.[1]

Möbiusband aus Papier

Inhaltsverzeichnis

Beschreibung

Ein Möbiusband ist leicht herzustellen, indem man einen längeren Streifen Papier mit beiden Enden ringförmig zusammenklebt, ein Ende aber vor dem Zusammenkleben um 180° verdreht.

Kugeln auf dem Rand eines Möbiusbandes tauschen die Seiten

Solche Möbiusbänder besitzen eine Mittellinie, die keinen Kreis einnehmen kann - es sei denn, das Band wird örtlich gedehnt. Die Form, die ein solches Band ungedehnt einnehmen kann, wird vollständig durch den Verlauf der Mittellinie beschrieben[2].

Möbiusbänder, deren Mittellinie auch im entspannten Zustand ein Kreis ist, können nicht aus einem geraden zweidimensionalen Papierstreifen gefertigt werden - sie besitzen entlang ihres Umfanges ungleich geformte Teilelemente, aus denen sie zusammengesetzt gedacht werden können.

Möbiusbänder sind chiral.

Das Möbiusband geht derart in sich selbst über, dass man, wenn man auf einer der scheinbar zwei Seiten beginnt, die Fläche einzufärben, zum Schluss das ganze Objekt gefärbt hat.

Andere interessante Effekte entstehen, wenn man auf dem Band eine Mittellinie oder zwei zur Mittellinie parallele Linien einzeichnet und das Band längs dieser Linie(n) aufschneidet, also es scheinbar halbiert oder drittelt. Im ersten Fall, also beim Durchschneiden entlang der Mittellinie, entsteht ein zweifach verdrillter (um 720° in sich verdrehter) Ring mit zwei Seiten und zwei Rändern. Im zweiten Fall entstehen zwei Objekte: Ein Möbiusband und ein zweifach verdrillter Ring, die ineinander hängen. Dieses Spiel kann man mit beliebig kleiner Einteilung fortsetzen: „viertelt“ man das Band, entstehen zwei doppelt verdrillte Bänder, die nicht nur ineinander hängen, sondern auch noch einmal häufiger umeinander geschlungen sind; „fünftelt“ man es, entsteht dieselbe Figur mit einem zusätzlichen Möbiusband, das in den beiden Ringen hängt; „sechstelt“ man das Band, erhält man zwei Ringe, die sich doppelt umschlingen und von einem weiteren Ring doppelt umschlungen werden, wobei der äußere und die beiden inneren Ringe beliebig untereinander austauschbar sind; „siebtelt“ man es wiederum, kommt wieder ein Möbiusband hinzu, das in den drei Ringen hängt usw. Ist n der Nenner des Bruchteils, in den man das Band scheinbar einteilt, und n gerade, also n = 2r, so erhält man r Ringe; ist n ungerade, n = 2r+1, so ist zusätzlich ein Möbiusband durch die Ringe geschlungen.

Mathematisch gesehen ist das Möbiusband eine nicht-orientierbare Mannigfaltigkeit. Eine weitere Fläche, die in diese Kategorie gehört, ist die Kleinsche Flasche; man kann eine Kleinsche Flasche so in zwei Teile zerlegen, dass aus ihr zwei Möbiusbänder entstehen.

Das mathematische Symbol für die Unendlichkeit wird manchmal fälschlicherweise als Möbiusband interpretiert.

In der Natur

  • Geladene Teilchen, die im Magnetfeld der Erde eingefangen wurden, können sich auf einem Möbiusband bewegen [3]
  • Das zyklische Protein Kalata B1, Wirkstoff der Pflanze Oldenlandia. O. affinis, als Naturheilmittel z. B. für die Geburtseinleitung, hat eine Möbius-Topologie [4]

In Kunst und Literatur

Möbius-Farbschema
Möbius-Skulptur

Berühmte Darstellungen des Möbiusbandes in der Kunst gibt es z. B. von M. C. Escher (Möbiusband I und II, 1963) sowie in neuerer Zeit von Gideon Möbius-Sherman. Auch der argentinische Spielfilm Moebius (1996) setzt sich mit dem Thema auseinander. In der Literatur wird das Möbiusband ebenfalls thematisiert: Die Struktur von John Barths Kurzgeschichtenserie „Lost In The Funhouse“ (dt. „Ambrose im Juxhaus“) basiert auf dem Unendlichkeits- oder Wiederholungsprinzip (z. B. fehlende Mitte) des Möbiusbandes. Auch wird dem Buch ein Möbiusband mitgeliefert, das postmoderne Literaturansätze („Frame-Tale“) spiegelt. Es ist beschriftet mit: „Once upon a time there was a story that began once upon a time …“. Diese Form der Selbstreferenz ist typisch für sogenannte Seltsame Schleifen. Der Lyriker Erich Fried bezieht sich in seinem Gedicht „Topologik“ auf das Möbiusband: „Ich habe mir ein Möbiusherz gefasst, das sich in ausweglose Streifen schneidet.“ Die Skulptur Kontinuität (1986) von Max Bill stellt kein Möbiusband dar, entgegen gängiger Auffassung.

Auch in der seit 1986 existierenden Romanreihe Necroscope des englischen Autors Brian Lumley spielt das Möbiusband eine wichtige Rolle. Es ist das Symbol einiger Figuren, vor allem aber bedeutend für die Hauptperson Harry Keogh. Er erlernt die Fähigkeit des Zeitreisens mit Hilfe des sogenannten Möbiuskontinuums, das sich ähnlich dem Möbiusband verhält.

Ebenso wird das Möbiusband in der Perry-Rhodan-Serie thematisiert und bildet hier die dreidimensionale Modellbeschreibung für die beiden Seiten des n-dimensionalen Universums (Arresum und Paresum).

Im 2011 in deutscher Sprache erschienenen Roman "Karte und Gebiet" von Michel Houellebecq ist ein Möbiusband auf der Grabplatte der Romanfigur Michel Houellebecq eingemeißelt.

Im Jahr 2011 hat der Student der Robotik Aaron Hoover an der Berkeley Universität ein Möbius-Getriebe als technische Spielerei mittels 3D-Druck hergestellt.[5]

In der Mode wurden auch schon Möbius-Schals entworfen.[6]

In der Technik

Mechanik

  • Bei Riemengetrieben, wo es für gleichmäßige Abnutzung sorgt.
  • Als Tonträger im Tefifon, um eine möglichst lange Spielzeit zu erreichen.

Elektrotechnik

  • Das schaltungstechnische Analogon eines Möbius-Bands ist ein Ringzähler mit einer Invertierung (Johnson-Zähler): eine Bitsequenz erreicht nach 2 Umläufen den Ausgangszustand, mithin kann mit n Speicherzellen bis 2n gezählt werden; Zählen sehr schnell aufeinanderfolgender Impulse[7][8]
  • Als kompakter Resonator mit der Resonanzfrequenz bei der Hälfte baugleicher linearer Spulen [9].
  • Als induktionsloser Widerstand, welcher auch als Möbius-Widerstand bezeichnet wird.[10]

Physik

Chemie

  • Als „Knotenmoleküle“ mit besonderen Eigenschaften (Knotane , Chiralität)

Nanotechnologie

  • Als molekulare Motoren [12].
  • Als Graphen-Band (Nano-Graphit) mit neuartigen elektronischen Eigenschaften, wie helikalem Magnetismus [13]

In der Mathematik

Analysis

Plot eines Möbiusbandes
3D-Ansichten einer
Möbius-Schnecke

Das Möbiusband kann als Teilmenge des \mathbb{R}^3 mittels der folgenden Parameterdarstellung gezeichnet werden:

x(r, \alpha) = \cos(\alpha) \cdot \left(1+\frac{r}{2}\cos\frac{\alpha}{2}\right)
y(r, \alpha) = \sin(\alpha) \cdot \left(1+\frac{r}{2}\cos\frac{\alpha}{2}\right)
z(r, \alpha) = \frac{r}{2} \sin\frac{\alpha}{2}

wobei 0\leq \alpha < 2\pi und -1\leq r \leq 1. Damit wird in der X-Y-Ebene ein Möbiusband mit einer Breite von 1 und einem Radius der Mittellinie von 1 um das Zentrum (0,0,0) erstellt. Der Winkel α hat seinen Scheitel im Zentrum; während er sich ändert, führt die Variantion von r zur Fläche, die sich zwischen der einzigen Kante spannt. Wie im Bild rechts leicht zu erkennen ist, handelt es sich nicht um ein aus einem Papierstreifen zu fertigendes Möbiusband - im waagerechten Teil ähneln die Teilelemente symmetrischen Trapezen.

Mit Hilfe von Zylinderkoordinaten (r,θ,z) wird durch die folgende Gleichung eine unbeschränkte Version des Möbiusbandes definiert:

\log(r) \cdot \sin(\theta/2) = z \cdot \cos(\theta/2).

Topologie

Möbiusband als Quotientenraum

Die Topologie bietet einen mathematischen Weg, ein Möbiusband durch das gegensinnige Zusammenkleben der Enden eines Papierstreifens herzustellen. Dort wird ein Möbiusband als Quotientenraum des Quadrats (x,y) \in [0,1] \times [0,1] definiert, wobei zwei gegenüberliegende Seiten durch die Äquivalenzrelation (0,y)∼(1,1 − y) für 0 \leq y \leq 1 miteinander identifiziert werden. Das nebenstehende Diagramm verdeutlicht dies.

Spinore

Man kann den Rand des Möbiusbandes auch als Spinor auffassen: Die Gruppe \operatorname{Spin}(1/2) sei durch 0\leq\phi<4\pi parametrisiert. Den Spinor \phi\mapsto\mathrm e^{\mathrm i\phi/2} kann man als Teilmenge

\{(\mathrm e^{\mathrm i\phi/2},\mathrm e^{\mathrm i\phi})\mid0\leq\phi\leq4\pi\}\subset\mathbb C\times S^1

auffassen; dies ist genau der Rand des Möbiusbandes

\{(r\mathrm e^{\mathrm i\phi/2},\mathrm e^{\mathrm i\phi})\mid0\leq r\leq1,0\leq\phi\leq4\pi\}\subset\mathbb C\times S^1.

Neue Erkenntnisse zur mathematischen Beschreibung eines Möbiusbands wurden im Jahr 2007 durch die Wissenschaftler E.L. Starostin und G.H.M. van der Heijden publiziert.[14]. Sie haben insbesondere die Form mathematisch berechnet, die ein aus einem Band gefertigtes Möbiusband von selbst einzunehmen bestrebt ist, um so den energieärmsten Zustand anzunehmen.

Literatur

Weblinks

 Commons: Möbiusband – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Listing biography
  2. Numerator: Rätsel des Möbiusbands gelöst - Wissenschaft - SPIEGEL ONLINE - Nachrichten
  3. IEEE Transactions on Plasma Science, Vol. 30, No. 1, Feb 2002 http://www.pparc.ac.uk/frontiers/latest/update.asp?article=2U2&style=update
  4. Protein Spotlight Issue 20: The protein with a topological twist
  5. Charlie Sorrel: Real Möbius Gear Will Melt Your Mind. In: Wired.com. 11. April 2011, abgerufen am 13. April 2011 (englisch).
  6. Lavendelhexe: Der Möbiusschal. In: Lavendelhexe.net. 31. Dezember 2009, abgerufen am 13. April 2011 (deutsch).
  7. NTZ, Heft 1, Jan. 1964, S.24-34
  8. W. Hilberg: A 500 Mc Twisted Ring Counter Whose Resolution Is Limited By Gate Switching Speed Only. In: Nuclear Instruments and Methods. 33, 1965, S. 322-324, doi:10.1016/0029-554X(65)90064-9.
  9. J. M. Pond: Mobius dual-mode resonators and bandpass filters. In: IEEE Trans. Microwave Theory and Tech.. 48, 2000, S. 2465-2471, doi:10.1109/22.898999.
  10. Patent US3267406: Non-inductive electrical resistor. Veröffentlicht am 16. August 1966, Erfinder: Richard L. Davis.
  11. Raul Perez-Enriquez: A Structural Parameter for High Tc Superconductivity from an Octahedral Moebius Strip in RBaCuO:123 type Perovskites. In: Rev. Mex. Fis.. 48 supplement 1, 2002, S. 262-267 (PDF 2,6 MB).
  12. Oleg Lukin und Fritz Vögtle: Knotting and Threading of Molecules: Chemistry and Chirality of Molecular Knots and Their Assemblies. In: Angew. Chem. Int. Ed.. 44, 2005, S. 1456-1477, doi:10.1002/anie.200460312.
  13. Atsushi Yamashiro, Yukihiro Shimoi, Kikuo Harigaya und Katsunori Wakabayashi: Novel electronic states in graphene ribbons—competing spin and charge orders. In: Physica E. 22, 2006, S. 688-691, arXiv:cond-mat/0309636v1, doi:10.1016/j.physe.2003.12.100.
  14. The shape of a Mobius strip: Abstract: Nature Materials

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Moebius'sche Schleife — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebius'sches Band — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebius-Band — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebius-Schleife — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebiusband — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebiussche Schleife — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebiussches Band — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebiusschleife — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebius’sche Schleife — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

  • Moebius’sches Band — Möbiusband aus Papier Ein Möbiusband, Möbiusschleife oder Möbius’sches Band ist eine zweidimensionale Struktur in der Topologie, die nur eine Kante und eine Fläche hat. Inhaltsverzeichnis 1 Beschreibung 2 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”