Rutherford-Streuung

Rutherford-Streuung

Die Rutherford-Streuung beschreibt die Streuung von geladenen Partikeln an einem geladenen Streuzentrum. Im Ausgangsversuch wurde die Streuung von Alpha-Teilchen an Gold-Atomkernen untersucht. Die sich daraus ergebenden Teilchenbahnen sind Hyperbeln. Die Verteilung der gestreuten Teilchen lässt auf die Struktur des Streuzentrums rückschließen. Dies führte zur Erkenntnis, dass die positive Ladung in den Atomen sich auf einen kleinen Raum im Atomzentrum konzentriert. Bis dahin galt das Modell von J.J. Thomson, bei dem die positive Ladung des Atoms homogen in einer Kugel verteilt ist (thomsonsches Atommodell). Beteiligt an diesen Experimenten waren Hans Geiger, Ernest Marsden und Ernest Rutherford. Bei der Betrachtung der Messergebnisse, die darauf hinweisen, dass die Masse des Atoms in einem kleinen Kern konzentriert ist, soll Rutherford gesagt haben: „Dies ist so unwahrscheinlich, als ob man mit einer Pistole auf einen Wattebausch schießt, und die Kugel zurückprallt.“

Inhaltsverzeichnis

Rutherfordscher Streuversuch (Manchester, 1909-1913)

Aufbau und Versuchsdurchführung

Versuchsaufbau: 1: Radioaktives Radium, 2: Bleimantel zur Abschirmung, 3: Alpha-Teilchenstrahl, 4: Leuchtschirm bzw. Fotografieschirm 5: Goldfolie 6: Punkt, an dem die Strahlen auf die Folie treffen, 7: Teilchenstrahl trifft den Schirm, nur wenige Teilchen werden abgelenkt.

In einen Bleiblock mit Öffnung zu einer Seite hin wird ein radioaktiver Stoff gelegt, der Strahlung abgibt: Alpha-, Beta- und Gamma-Strahlung. Diese Strahlen werden durch die Öffnung im Bleiblock durch ein elektrisches Feld geleitet. Die Beta-Strahlen lenkt man zum positiven Pol hin ab, die Alpha-Strahlen zum negativen Pol und die Gamma-Strahlen bleiben unverändert. Die Alpha-Strahlung wird durch eine (ca. 1000 Atome) dünne Goldfolie geleitet. Die Strahlung lässt sich danach mit einem Leuchtschirm sichtbar machen. Es wurde Gold verwendet, da es sich schon damals mit einfachen mechanischen Mitteln zu sehr dünnen Schichten verarbeiten ließ und eine hohe Atommasse besitzt.

Beobachtung

oben: erwartetes Ergebnis nach dem Thomsonschen Atommodell
unten: beobachtetes Ergebnis
  • Der Großteil der Alpha-Teilchen kann die Goldfolie (mehr oder weniger) ungehindert passieren.
  • Größere Streuwinkel kommen immer seltener vor, je größer der Winkel ist.
  • Auch Streuwinkel von über 90° gibt es, aber extrem selten.
  • Einige Alpha-Teilchen werden zurück gestreut.
  • Die Verteilung entspricht der Rutherfordschen Streuformel.

Interpretation

Die Ablenkung der Alpha-Teilchen und ihre Winkelverteilung lassen sich dadurch verstehen, dass sich in den Atomen ein sehr kleines Massezentrum befindet, das positiv geladen ist. Man nennt dieses Massezentrum den Atomkern. Die meisten Teilchen passieren die Goldfolie ungehindert, d.h. dass zwischen den Kernen ein großer Freiraum besteht. Das Ergebnis führte auf das rutherfordsche Atommodell. Die Elektronen, welche um den Kern kreisen, schirmen die positive Kern-Ladung ab, sodass das Atom nach außen hin neutral erscheint.

Rutherfordsche Streuformel

Die rutherfordsche Streuformel gibt den so genannten differenziellen Streuquerschnitt (auch Wirkungsquerschnitt genannt) im Schwerpunktsystem an:

\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{1}{4\pi\varepsilon_0} \frac{Z_1Z_2e^2}{4E_0} \right) ^2 \frac{1}{ \sin^4 \left( \frac{\vartheta}{2} \right) }

Die gleiche Formel in kernphysikalisch sinnvollen Einheiten:

\frac{\mathrm{d}\sigma} {\mathrm{d}\Omega} [\mathrm{barn}] \approx 1{,}3 \cdot 10^{-3} \left(\frac{Z_1 Z_2}{E_0[\mathrm{MeV}]}
\right)^2\frac{1}{ \sin^4 \left( \frac{\vartheta}{2} \right) }

Damit ist die Wahrscheinlichkeit beschrieben, dass gestreute Teilchen nach einer Ablenkung um den Winkel \vartheta im Raumwinkel \mathrm{d}\Omega = 2\pi\sin(\vartheta)\,\mathrm{d}\vartheta auftreffen.

In der Formel werden weiterhin folgende Größen benutzt:

Elektrische Feldkonstante (Dielektrizitätskonstante) \varepsilon_0 = 8{,}854 \cdot 10^{-12} \frac{\mathrm{C}}{\mathrm{Vm}}
Ladung des gestreuten Teilchens Z1e
Ladung des Atomkerns Z2e
Elementarladung e = 1{,}602 \cdot 10^{-19} \mathrm{C}
Anfangsenergie des gestreuten Teilchens E0

Auf den Vorfaktor kommt man, indem man folgende Größen verwendet:

Feinstrukturkonstante \alpha\ =\ \frac{1}{4 \pi \varepsilon_0}\;\frac{e^2}{\hbar c} \approx 1/137
Einheit für den Wirkungsquerschnitt 1barn = 100fm2
\hbar c = 197 \mathrm{MeV} \cdot \mathrm{ fm}

Rutherford leitete die rutherfordsche Streuformel aus der klassischen Physik her. Eine vollständige quantenmechanische Behandlung des Problems mit Hilfe der bornschen Näherung ergibt, dass die rutherfordsche Streuformel in erster Ordnung korrekt ist und quantenmechanische Effekte nur kleine Korrekturen darstellen. Ein weiteres Problem der rutherfordschen Formel ist der Grenzfall \vartheta=0, für die der differentielle Wirkungsquerschnitt unendlich groß wird. Kleine Winkel entsprechen jedoch einem großen Stoßparameter. Bei sehr großen Stoßparametern schirmen die Atomelektronen den Kern jedoch ab. Die einzige Möglichkeit sehr kleine Winkel bei kleinen Stoßparametern zu haben, ist die Energie der α-Teilchen zu erhöhen. Für sehr hohe Energien kann die Ladungsverteilung des Atomkerns jedoch nicht mehr als punktförmig angenommen werden. Dann geht der Formfaktor der Ladungsverteilung zusätzlich in die Streuformel ein. Außerdem kann man bei hohen Projektilenergien nicht mehr davon ausgehen, dass die Streuung nur durch elektromagnetische Wechselwirkung geschieht. Nähern sich beide Kerne bis zu einem Kontaktradius, spielt die starke Wechselwirkung eine größere Rolle.

Plausibilitätsbetrachtung der Abhängigkeiten

Nach den Feynman-Regeln ergibt sich für die Streuung eines Teilchens der Ladung Z1e an einem zweiten Teilchen der Ladung Z2e für die Wahrscheinlichkeitsamplitude

 M_{fi} \sim (Z_1 e)\cdot(Z_2 e) \;\textrm{,}

wobei der Propagator vernachlässigt wurde. Nach Fermis Goldener Regel gilt

 \frac{d\sigma}{d\Omega} \sim |M_{fi}|^2 \;\textrm{,}

womit folgt, dass

 \frac{d\sigma}{d\Omega} \sim (Z_1 e)^2\cdot(Z_2 e)^2=(Z_1 Z_2 e^2)^2 \;\textrm{.}

Herleitung der Rutherford-Streuformel

Aufgrund der abstoßenden Wirkung der Coulombkraft F = \frac{{Z_1 Z_2 e^2 }}{{4\pi \varepsilon _0 r^2 }}


ergibt sich für die Bahn des Alphateilchens (Z1 = 2) eine Hyperbel.

Rutherfordstreuung aus atomarer Sicht

Die große Halbachse a der Hyperbel lässt sich aus dem Ansatz

E_\mathrm{kin}  = e\Phi _c  = \frac{Z_1 Z_2 e^2 }{4\pi \varepsilon _0 2a} = \frac{Z_1 Z_2 e^2 }{8\pi \varepsilon _0 a}

bestimmen, wobei 2a der minimale Abstand des Alphateilchens ist, wenn es zentral mit dem Kern stößt. a ist von der kinetischen Energie abhängig und kann auch für Stöße, die nicht zentral sind, übernommen werden. Der Stoßparameter b ist der minimale Abstand des Alphateilchens zum Kern, wenn es auf einer Geraden weiter fliegen würde. Tatsächlich wird das Alphateilchen um den Winkel \vartheta gestreut. Aus der Geometrie der Hyperbel erhält man folgende Gleichungen:

\tan \left( \alpha  \right) = \frac{b}{a} = \tan \left(90^\circ  - \frac{\vartheta }{2}\right) = \cot \left( {\frac{\vartheta }{2}} \right)\text{, da }\quad 2\alpha  + \vartheta  = 180^\circ

und damit

\cot \frac{\vartheta}{2} = \frac{b}{a} = \frac{8\pi \varepsilon _0 E_\mathrm{kin}}{Z_1 Z_2 e^2 } b.

Durch Ableitung der letzten Formel erhält man einen Zusammenhang zwischen der Breite db eines Hohlkegels und der zugehörigen Breite d\varthetades Ablenkwinkels
\vartheta.

 - \frac{1}{2\sin ^2 \frac{\vartheta }{2}} d\vartheta  = \frac{8\pi \varepsilon _0 E_\mathrm{kin}}{Z_1 Z_2 e^2 }db
Wirkungsquerschnitt beim Durchgang der Alphateilchen durch die Folie

Sei z = \frac{n}{V} die Teilchendichte (n Atome pro Volumen V) des Streumaterials und x die Dicke der Folie, so gibt \sigma  = \frac{A}{n} = \frac{\frac{V}{x}}{n} = \frac{1}{zx} die durchschnittliche Querschnittsfläche pro Atom an, die das Alphateilchen beim Durchgang durch die Folie erfährt. σ nennt man auch den Wirkungsquerschnitt.


Die Wahrscheinlichkeit P(\vartheta )d\vartheta im Ring des Hohlzylinders zu landen ergibt sich dann aus

P(\vartheta )d\vartheta  = \frac{A_b}{\sigma} = \frac{2\pi bdb}{\frac{1}{zx}} = zx2\pi bdb.
Streukegel beim Rutherfordversuch


Von N Teilchen werden dN' in den Hohlkegel gestreut. Die Wahrscheinlichkeit dafür ist

P(\vartheta )d\vartheta  = \frac{dN'}{N} = zx2\pi bdb = zx2\pi \frac{Z_1 Z_2 e^2}{8\pi \varepsilon _0 E_\mathrm{kin}} \cot \frac{\vartheta}{2} \cdot \frac{Z_1 Z_2 e^2}{8\pi \varepsilon _0 E_\mathrm{kin}} \cdot \frac{1}{2\sin ^2 \frac{\vartheta }{2}} d\vartheta  = zx\frac{Z_1 ^2 Z_2 ^2 e^4 }{64\pi \varepsilon _0 ^2 E_\mathrm{kin} ^2 } \cdot \frac{\cos \frac{\vartheta }{2}}{\sin ^3 \frac{\vartheta}{2}}d\vartheta


dN gibt die Anzahl der Teilchen in den Raumwinkel dΩ an.

d\Omega  = 2\pi \sin (\vartheta )d\vartheta  = 4\pi \sin \frac{\vartheta}{2} \cos \frac{\vartheta}{2} d\vartheta


Daraus folgt :

d\vartheta  = \frac{1}
{{4\pi \sin \frac{\vartheta }
{2}\cos \frac{\vartheta }
{2}}}d\Omega .

So ergibt sich für die Wahrscheinlichkeit


\frac{{dN}}
{N} = zx\frac{{Z_1 ^2 Z_2 ^2 e^4 }}
{{256\pi ^2 \varepsilon _0 ^2 E_\mathrm{kin} ^2 }} \cdot \frac{1}
{{\sin ^4 \frac{\vartheta }
{2}}}d\Omega


Dies ist die Rutherford-Streuformel. Sie gibt an, wie hoch die Wahrscheinlichkeit für ein Teilchen ist, in den Raumwinkel dΩ gestreut zu werden.

Oft wird die Streuformel mit Hilfe des differentiellen Wirkungsquerschnitts 
\frac{{d\sigma }}
{{d\Omega }}
angegeben. Er ist ein Maß für die gleiche Wahrscheinlichkeit.

Es gilt


\frac{{dN}}
{N} = \frac{{d\sigma }}
{\sigma } = z \cdot x \cdot \,\,d\sigma

und damit


\frac{{d\sigma }}
{{d\Omega }} = \frac{{Z_1 ^2 Z_2 ^2 e^4 }}
{{256\pi ^2 \varepsilon _0 ^2 E_\mathrm{kin} ^2 }} \cdot \frac{1}
{{\sin ^4 \frac{\vartheta }
{2}}} = \left( {\frac{{Z_1 Z_2 e^2 }}
{{4\pi \varepsilon _0  \cdot 4 \cdot E_{Kin} }}} \right)^2  \cdot \frac{1}
{{\sin ^4 \frac{\vartheta }
{2}}}

.

Bemerkungen

1) \vartheta  = 0 ist nicht definiert, da es einen minimalen Ablenkwinkel \vartheta _{\min}gibt. Dieser wird angenommen, wenn sich das Alphateilchen im Abstand b = bmax  vom Atom, also am Rand der kreisförmigen Wirkungsquerschnittsfläche bewegt. Für einen größeren Stoßparameter b befindet sich das Alphateilchen im Streufeld des Nachbaratoms und der Ablenkwinkel nimmt wieder zu. Dabei gilt:

\sigma  = \frac{A}{n} = b_{\max}^2  \cdot \pi
und
\tan \frac{\vartheta _{\min}}{2} = \frac{Z_1 Z_2 e^2}{8\pi \varepsilon _0 E_\mathrm{kin}  \cdot b_{\max}}.

2) Das Integral über die Wahrscheinlichkeitsverteilung P(\vartheta )d\vartheta ergibt 1


\int\limits_{\vartheta _{\min }}^\pi  {P(\vartheta )d\vartheta }  = 1

3) Ähnliches gilt für die Flächenintegrale


\int\limits_{\vartheta  \geqslant \vartheta _{\min} } {zx\frac{{Z_1 ^2 Z_2 ^2 e^4 }}
{{256\pi ^2 \varepsilon _0 ^2 E_\mathrm{kin} ^2 }} \cdot \frac{1}
{{\sin ^4 \frac{\vartheta }
{2}}}d\Omega }  = 1
und

\int\limits_{\vartheta  \geqslant \vartheta _{\min} } {\left( {\frac{{Z_1 Z_2 e^2 }}
{{4\pi \varepsilon _0  \cdot 4 \cdot E_\mathrm{kin}}}} \right)^2  \cdot \frac{1}
{{\sin ^4 \frac{\vartheta }
{2}}}} d\Omega  = \sigma

Literatur

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Rutherford-Streuung —   [ rʌȓəfəd ], Streuung eines elektrisch geladenen Teilchens an einem anderen durch die elektrostatische Coulomb Wechselwirkung. Bei der (niederenergetischen) Streuung von Alphateilchen an einer dünnen Goldfolie beobachtete E. Rutherford, dass… …   Universal-Lexikon

  • Rutherford-Versuch — Rutherford Streuung beschreibt die Streuung von geladenen Partikeln an einem geladenen Streuzentrum. Im Ausgangsversuch wurde die Streuung von Alpha Teilchen an Gold Atomkernen untersucht. Die sich daraus ergebenden Teilchenbahnen sind Hyperbeln …   Deutsch Wikipedia

  • Rutherford Back Scattering — Rutherford Backscattering Spectrometry (RBS), deutsch Rutherford Rückstreu Spektrometrie, ist eine Methode zur Untersuchung von oberflächennahen dünnen Schichten mit Hilfe von Ionenstrahlen. Für eine Messung schießt man hochenergetische Ionen… …   Deutsch Wikipedia

  • Rutherford — ist der Familienname folgender Personen: Albert G. Rutherford (1879–1941), US amerikanischer Politiker Alexander Cameron Rutherford (1857–1941), kanadischer Politiker Ann Rutherford (* 1920), US amerikanische Schauspielerin Daniel Rutherford… …   Deutsch Wikipedia

  • Streuung (Physik) — Unter Streuung versteht man in der Physik allgemein die Ablenkung eines Objekts durch Wechselwirkung mit einem lokalen anderen Objekt (Streuzentrum). Beispiele sind die Streuung von Licht an Atomen oder Feinstaub, von Elektronen an anderen… …   Deutsch Wikipedia

  • Streuung — Verteilung; Ausbreitung; Verbreitung; Konzentrationsausgleich; Durchmischung; Diffusion; Eindringen in eine Substanz; Feinverteilung; Standardabweichung; Varianz ( …   Universal-Lexikon

  • Rutherford Backscattering Spectrometry — (RBS), deutsch Rutherford Rückstreu Spektrometrie, ist eine Methode zur Untersuchung von oberflächennahen dünnen Schichten mit Hilfe von Ionenstrahlen. Es ist daher eng verwandt mit anderen Methoden der Ionenstreuspektroskopie, wie der… …   Deutsch Wikipedia

  • Mott-Streuung — Die Mott Streuung (nach Nevill F. Mott) ist die elastische Streuung eines punktförmigen Spin 1/2 Teilchens (Fermions), zum Beispiel eines Elektrons, an einer statischen, punktförmigen Ladung ohne Spin. Sie wird in der Kern und Teilchenphysik zur… …   Deutsch Wikipedia

  • Coulomb-Streuung — Die Coulomb Streuung, auch Rutherford Streuung genannt, bezeichnet den quantenelektrodynamischen Prozess indem ein Elektron oder Positron an einer Quelle (Atomkern) gestreut wird. Die Quelle ist dabei eine statische Punktquelle oder ein… …   Deutsch Wikipedia

  • Rutherfordscher Streuversuch — Rutherford Streuung beschreibt die Streuung von geladenen Partikeln an einem geladenen Streuzentrum. Im Ausgangsversuch wurde die Streuung von Alpha Teilchen an Gold Atomkernen untersucht. Die sich daraus ergebenden Teilchenbahnen sind Hyperbeln …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”