Texterkennung

Texterkennung
Beispiel einer automatischen Texterkennung

Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus der Informationstechnik und bezeichnet die automatisierte Texterkennung innerhalb von Bildern.

Inhaltsverzeichnis

Grundsätzliches

Texterkennung ist deshalb notwendig, weil optische Eingabegeräte (Scanner oder Digitalkameras, aber auch Faxempfänger) als Ergebnis ausschließlich Rastergrafiken liefern können, d. h. in Zeilen und Spalten angeordnete Punkte unterschiedlicher Färbung (Pixel). Texterkennung bezeichnet dabei die Aufgabe, die so dargestellten Buchstaben als solche zu erkennen, d. h. zu identifizieren und ihnen den Zahlenwert zuzuordnen, der ihnen nach üblicher Textcodierung zukommt (ASCII, Unicode). Automatische Texterkennung und OCR werden im deutschen Sprachraum oft synonym verwendet. In technischer Hinsicht bezieht sich OCR jedoch nur auf den Teilbereich der Mustervergleiche von separierten Bildteilen als Kandidaten zur Erkennung von Einzelzeichen. Diesem OCR-Prozess geht eine globale Strukturerkennung voraus, in der zuerst Textblöcke von graphischen Elementen unterschieden, die Zeilenstrukturen erkannt und schließlich Einzelzeichen separiert werden. Bei der Entscheidung, welches Zeichen vorliegt, kann über weitere Algorithmen ein sprachlicher Kontext berücksichtigt werden.

Ursprünglich wurden zur automatischen Texterkennung eigens entworfene Schriftarten entwickelt, die zum Beispiel für das Bedrucken von Scheckformularen verwendet wurden. Diese Schriftarten waren so gestaltet, dass die einzelnen Zeichen von einem OCR-Lesegerät schnell und ohne großen Rechenaufwand unterschieden werden konnten. So zeichnet sich die Schriftart OCR-A (DIN 66008, ISO 1073-1) durch einander besonders unähnliche Zeichen, besonders bei den Ziffern, aus. OCR-B (ISO 1073-2) ähnelt mehr einer serifenlosen, nicht-proportionalen Schriftart, während OCR-H (DIN 66225) handgeschriebenen Ziffern und Großbuchstaben nachempfunden wurde.

Die gestiegene Leistungsfähigkeit moderner Computer und verbesserte Algorithmen erlauben inzwischen auch die Erkennung von „normalen“ Druckerschriftarten bis hin zu Handschriften (etwa bei der Briefverteilung); wenn jedoch Lesbarkeit durch Menschen nicht vorrangig ist, werden drucktechnisch und erkennungstechnisch einfacher handhabbare Strichcodes genutzt.

Moderne Texterkennung umfasst inzwischen mehr als reine OCR, das heißt die Übersetzung einzelner Schriftzeichen. Zusätzlich werden Methoden der Kontextanalyse, Intelligent Character Recognition (ICR), hinzugezogen, mit denen die eigentlichen OCR-Ergebnisse korrigiert werden können. So kann ein Zeichen, das eigentlich als „8“ erkannt wurde, zu einem „B“ korrigiert werden, wenn es innerhalb eines Wortes steht. Statt „8aum“ wird also „Baum“ erkannt. Im Bereich industrieller Texterkennungssysteme wird daher von OCR/ICR-Systemen gesprochen. Die Grenzen des OCR-Begriffes sind jedoch fließend, denn OCR und ICR dienen auch als Marketingbegriffe, um technische Weiterentwicklungen besser vermarkten zu können. Auch Intelligent Word Recognition (IWR) fällt unter diese Kategorie. Dieser Ansatz versucht das Problem bei der Erkennung von Fließhandschriften zu lösen, bei der die Einzelzeichen nicht eindeutig separiert und daher nicht über herkömmliche OCR-Methoden erkannt werden können.

Ein prinzipiell anderer Ansatz der Texterkennung wird bei der Handschriftenerkennung auf Touchscreens oder Eingabefeldern (PDA usw.) verwendet. Hier werden vektorbasierte Muster verarbeitet, entweder ‚offline‘ als gesamtes Wort oder ‚online‘ mit zusätzlicher Analyse des Eingabeflusses (beispielsweise Apples Inkwell).

Eine Sonderform der Texterkennung ergibt sich beispielsweise bei der automatischen Verarbeitung des Posteingangs großer Firmen. Eine Aufgabenstellung ist das Sortieren der Belege. Dafür braucht nicht immer der Inhalt analysiert zu werden, sondern es genügt manchmal schon, die groben Merkmale, etwa das charakteristische Layout von Formularen, Firmenlogos etc., zu erkennen. Die Klassifikation bestimmter Textarten erfolgt wie bei der OCR über eine Mustererkennung, die sich jedoch global auf das gesamte Blatt oder definierte Stellen anstelle einzelner Buchstaben bezieht.

Verfahren

Ausgangspunkt ist eine Bilddatei (Rastergrafik), die von der Vorlage per Scanner, Digitalfotografie oder Videokamera erzeugt wird. Die Texterkennung selbst erfolgt dreistufig:

Seiten- und Gliederungserkennung

Die Bilddatei wird in relevante Bereiche (Texte, Bildunterschriften) und irrelevante Bereiche (Abbildungen, Weißflächen, Linien) aufgeteilt.

Mustererkennung

Fehlerkorrektur auf Pixelebene

Die Rohpixel können durch ihre Nachbarschaftsbeziehungen zu angrenzenden Pixeln korrigiert werden. Einzelne Pixel werden gelöscht. Fehlende Pixel können ergänzt werden. Dadurch erhöht sich die Trefferquote bei einem reinen Mustervergleich. Dies ist stark abhängig vom Kontrast der Vorlage.

Mustervergleich Mapping

Die Pixelmuster der Textbereiche werden mit Mustern in einer Datenbank verglichen, Rohdigitalisate werden erzeugt.

Fehlerkorrektur Zeichenebene (Intelligent Character Recognition, ICR)

Die Rohdigitalisate werden mit Wörterbüchern verglichen sowie nach linguistischen und statistischen Verfahren hinsichtlich ihrer wahrscheinlichen Fehlerfreiheit bewertet. In Abhängigkeit von dieser Bewertung wird der Text ausgegeben oder gegebenenfalls einer erneuten Layout- oder Mustererkennung mit veränderten Parametern zugeführt.

Fehlerkorrektur auf Wortebene (Intelligent Word Recognition, IWR)

Fließhandschrift, bei der die Einzelzeichen nicht voneinander getrennt erkannt werden können, wird anhand globaler Charakteristiken mit Wörterbüchern verglichen. Die Treffergenauigkeit verringert sich mit der zunehmenden Größe des eingebundenen Wörterbuches, da die Verwechslungsmöglichkeiten zunehmen. Einsatzbereiche sind definierte Feldbereiche mit eingeschränkten Angabenmöglichkeiten, zum Beispiel handgeschriebene Adressen auf Briefumschlägen.

Manuelle Fehlerkorrektur

Viele Programme bieten darüber hinaus einen besonderen Modus zur manuellen Fehlerkorrektur durch den Anwender für diejenigen Textbereiche, die „unsicher“ erkannt wurden.

Codierung in das Ausgabeformat

Je nach Aufgabenstellung erfolgt die Ausgabe in eine Datenbank oder als Textdatei in einem definierten Format wie ASCII oder XML, gegebenenfalls auch mit Layout (etwa als HTML oder PDF).

Die Qualität der Texterkennung bestimmen unter anderem mehrere Faktoren:

  • Qualität der Layouterkennung,
  • Umfang und Qualität der Muster-Datenbank,
  • Umfang und Qualität der Wörterbücher,
  • Qualität der Algorithmen zur Fehlerkorrektur,
  • Farbigkeit, Kontrast, Layout und Schriftart des Originaldokumentes,
  • Auflösung und Qualität der Bilddatei.


Die Zahl der unerkannten Fehler in einem Dokument lässt sich abschätzen, siehe Rechtschreibfehler. Während Texte Redundanzen enthalten und deshalb eine höhere Fehlerrate zulassen, erfordern Zahlenlisten, wie beispielsweise Telefonnummern, ein mehrmaliges Korrekturlesen.

Anwendungen

  • Wiedergewinnen von Textinformation aus Bilddateien, um diese mit Hilfe einer Textverarbeitung weiter zu bearbeiten oder elektronisch durchsuchbar zu machen
  • Erkennung von relevanten Merkmalen (zum Beispiel Postleitzahl, Vertragsnummer, Rechnungsnummer) zur mechanischen (Poststraße) oder elektronischen (Workflow-Management-System) Einsortierung eines Schriftstücks
  • Eine erweiterte Volltextsuche in Datenbanken oder Document-Management-Systemen, um auch PDFs und Bilder durchsuchen zu können.
  • Erkennung von Merkmalen zur Registrierung und gegebenenfalls Verfolgung von Gegenständen (beispielsweise Kfz-Kennzeichen)
  • Layouterkennung: Es wird ein formatiertes Dokument erstellt, das der Vorlage bezüglich Text-, Bild- und Tabellenanordnung möglichst nahe kommt.
  • Blindenhilfsmittel: Für Blinde wird es durch die Texterkennung möglich, eingescannte Texte über Computer und Braillezeile zu lesen oder sich per Sprachausgabe vorlesen zu lassen.

OCR-Software

Proprietäre Software

  • BIT-Alpha von B.I.T. Bureau Ingénieur Tomasi
  • FineReader von ABBYY
  • FormPro von OCR Systeme
  • OCRKit für Mac OS und iOS
  • OmniPage von Nuance Communications (früher: ScanSoft)
  • Readiris von Image Recognition Integrated Systems Group (I.R.I.S)
  • CrystalOCR von Nicomsoft

Als Nebenfunktion in proprietärer Software:

Freie Software

Siehe auch

Literatur

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Texterkennung — Optical Character Recognition (engl.); optische Zeichenerkennung; OCR * * * Texterkennung,   OCR …   Universal-Lexikon

  • Handschrifterkennung — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • OCR-Schriften — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • OZE — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • Optical Character Recognition — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • Optical character recognition — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • Optische Zeichenerkennung — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • Schrifterkennung — Texterkennung oder auch Optische Zeichenerkennung (Abkürzung OCR von englisch Optical Character Recognition, selten auch: OZE) ist ein Begriff aus dem IT Bereich und beschreibt die automatische Texterkennung von einer gedruckten Vorlage.… …   Deutsch Wikipedia

  • Optical Character Recognition — Texterkennung; optische Zeichenerkennung; OCR * * * Optical Character Recognition,   OCR, OCR Software, optische Zeichenerkennung …   Universal-Lexikon

  • Intelligent Character Recognition — wird im angelsächsischen Sprachraum die elektronische Texterkennung genannt, wohingegen im deutschsprachigen Umfeld „OCR“ als Synonym Verwendung findet. Tatsächlich handelt es sich jedoch um unterschiedliche Teilbereiche der Texterkennung.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”