Cauchy-Kriterium

Cauchy-Kriterium

Das Cauchykriterium für unendliche Reihen (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung ob eine unendliche Reihe konvergent oder divergent ist.

Sei eine unendliche Reihe

S = \sum_{n=0}^\infty a_n

mit reellen oder komplexen Summanden an gegeben.

Wenn zu jedem \varepsilon > 0 ein Index N existiert, so dass für alle m und n mit m > n > N gilt:

\left| \sum_{k=n}^m a_k \right| < \varepsilon

dann konvergiert die Reihe in \mathbb{R} (bzw. \mathbb{C}). Ist das Kriterium nicht erfüllt, divergiert sie.

Dieses Kriterium sagt zunächst nur aus, dass die Partialsummenfolge von S eine Cauchy-Folge ist. Aufgrund der Vollständigkeit von \mathbb{R} und \mathbb{C} folgt dann die Konvergenz der Reihe.


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Cauchy-Eigenschaft — Das Cauchykriterium für unendliche Reihen (nach Augustin Louis Cauchy) ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung ob eine unendliche Reihe konvergent oder divergent ist. Sei eine unendliche Reihe mit reellen oder …   Deutsch Wikipedia

  • Cauchy-Riemannsche partielle Differentialgleichungen — Die Cauchy Riemannschen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814… …   Deutsch Wikipedia

  • Cauchy-Filter — Uniforme Räume im Teilgebiet Topologie der Mathematik sind Verallgemeinerungen von metrischen Räumen. Jeder metrische Raum kann auf natürliche Weise als uniformer Raum betrachtet werden, und jeder uniforme Raum kann auf natürliche Weise als… …   Deutsch Wikipedia

  • Cauchy-Riemann-Differentialgleichungen — Die Cauchy Riemann schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 …   Deutsch Wikipedia

  • Cauchy-Riemann-Gleichungen — Die Cauchy Riemann schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 …   Deutsch Wikipedia

  • Cauchy-Riemannsche Differentialgleichungen — Die Cauchy Riemann schen partiellen Differentialgleichungen (nach Augustin Louis Cauchy und Bernhard Riemann) sind ein Begriff aus der Funktionentheorie und ein Kriterium für komplexe Differenzierbarkeit. Die Gleichungen wurden das erste Mal 1814 …   Deutsch Wikipedia

  • Cauchy-Problem — Als Anfangswertproblem (AWP) (manchmal auch als Anfangswertaufgabe (AWA) oder Cauchy Problem genannt) bezeichnet man in der Analysis eine wichtige Klasse von Differentialgleichungen, bei denen aus vorgegebenen Anfangsdaten, nämlich dem… …   Deutsch Wikipedia

  • Cauchy'sches Verdichtungskriterium — Das Cauchysche Verdichtungskriterium, auch bekannt als Cauchyscher Verdichtungssatz (nach Augustin Louis Cauchy), ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist …   Deutsch Wikipedia

  • Augustin Louis Cauchy — [ogysˈtɛ̃ lwi koˈʃi] (* 21. August 1789 in Paris; † 23. Mai 1857 in Sceaux) war ein französischer Ma …   Deutsch Wikipedia

  • Epsilon-Delta-Kriterium — Die Stetigkeit ist ein Konzept der Mathematik, das vor allem in den Teilgebieten der Analysis und der Topologie von zentraler Bedeutung ist. Eine Funktion heißt stetig, wenn verschwindend kleine Änderungen des Argumentes (der Argumente) nur zu… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”