László Rédei

László Rédei

László Rédei (auch als Ladislaus Rédei zitiert; * 15. November 1900 in Rákoskeresztúr, jetzt Teil von Budapest[1]; † 21. November 1980 in Budapest) war ein ungarischer Mathematiker, der sich mit Algebra (insbesondere Gruppentheorie und Theorie der Halbgruppen) und algebraischer Zahlentheorie beschäftigte.

László Rédei

Rédei studierte an der Universität Budapest (unter anderem bei Leopold Fejér), an der er 1922 mit einer zahlentheoretischen Arbeit promovierte. Schon 1921 veröffentlichte er seine erste Arbeit und war dann zunächst ab 1921 für zwanzig Jahre Schullehrer. Daneben publizierte er aber über algebraische Zahlentheorie, habilitierte sich 1932 in Debrecen, war 1934/35 mit einem Humboldt Stipendium an der Universität Göttingen und erhielt 1940 für seine Arbeiten die König-Medaille. 1940 wurde er Dozent und 1950 Professor an der Universität Szeged[2] und ab 1967 war er am Mathematischen Institut der Ungarischen Akademie der Wissenschaften in Budapest.

In der algebraischen Zahlentheorie gab er neue Beweise für das Quadratische Reziprozitätsgesetz und bewies ab den 1930er Jahren Sätze zur Struktur der Klassengruppe reeller quadratischer Zahlkörper und damit zusammenhängend über die Pellsche Gleichung.[3] Teilweise arbeitete er dabei in den 1930er Jahren mit Hans Reichardt zusammen. Weiterhin untersuchte er in den 1940er Jahren, unter welchen Bedingungen reelle quadratische Zahlkörper euklidische Zahlkörper sind, und fand einige der 21 Zahlkörper dieser Art. Er befasste sich mit endlichen Gruppen und verallgemeinerte einen Satz von György Hajós[4] über die Faktorzerlegung endlicher Gruppen[5]. Der Satz von Hajós besagt, dass, wenn eine endliche abelsche Gruppe als direktes Produkt zweier zyklischer Mengen dargestellt werden kann, eine dieser beiden Mengen eine Untergruppe ist. Rédei verallgemeinerte das 1965 auf die Darstellung durch Produkte von Mengen, die jeweils Primzahl-Kardinalität haben und die Identität enthalten (nach Rédei ist dann eine der Mengen eine Untergruppe). Rédei untersuchte auch allgemeine schiefe Produkte.

Ein früher Beitrag zur Klassifikation der endlichen Gruppen war seine Bestimmung der endlichen nichtkommutativen Gruppen, deren eigentliche Untergruppen alle kommutativ sind [6]. Posthum erschien 1989 sein Buch über endliche p-Gruppen. Ein weiteres Arbeitsgebiet von Redei, auf dem er wichtige Beiträge lieferte, war die Theorie der Halbgruppen.

Rédei war 1947 bis 1949 Präsident der János Bolyai Gesellschaft und ab 1949 korrespondierendes und ab 1955 volles Mitglied der Ungarischen Akademie der Wissenschaften. Zweimal gewann er den Kossuth-Preis (1950, 1955). Er war seit 1962 Mitglied der Leopoldina. Seit 1934 war er Mitglied der DMV.

Schriften

  • Algebra, Akademische Verlagsgesellschaft Geest und Portig, Leipzig 1959 (ungarisches Original 1954)
  • Lückenhafte Polynome über endlichen Körpern, Birkhäuser 1970 (englische Übersetzung 1973)
  • Endliche p-Gruppen, Akadémiai Kiadó, Budapest 1989 (Herausgegeben von L. Márki, P. P. Pálfy)
  • Theorie der endlich erzeugbaren kommutativen Halbgruppen, Hamburger Mathematische Einzelschriften, Physica Verlag 1963 (englische Übersetzung 1965, Pergamon Press)
  • Begründung der euklidischen und nichteuklidischen Geometrie nach Felix Klein, Akadémiai Kiadó, Budapest 1965 (englische Übersetzung 1968)

Einige Online Arbeiten:

Weblinks

Verweise

  1. deutscher Name Gerersdorf
  2. 1940 wurde Klausenburg wieder von Rumänien angegliedert, wo die Universität Szeged vorher war. Diese zog wieder dorthin und in Szeged wurde eine Professur frei (die von Gyula Szőkefalvi-Nagy), die Redei einnahm.
  3. z.B. Redei, Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie des Pellschen Gleichung, Acta Math. Acad.Sci. Hungaricae, Bd.4, 1953, S.31-87
  4. der 1942 damit eine geometrische Vermutung von Hermann Minkowski gruppentheoretisch formulierte und löste.
  5. Redei Vereinfachter Beweis des Satzes von Minkowski-Hajós, Acta Sci.Math. (Szeged), Bd. 143, 1949, S.21, Redei Die neue Theorie der endlichen abelschen Gruppen und Verallgemeinerungen des Hauptsatzes von Hajós, Acta Math.Acad.Sci. Hungar. Bd.16, 1965, S.329-373
  6. Erwähnt in Solomon A brief history of the classification of the finite simple groups, BAMS Bd.38, 2001, S.323 (ebenso wie G.Szekeres 1949) als Vorläufer der Klassifikation der endlichen CA-Gruppen durch Richard Brauer, K. A. Fowler, Michio Suzuki und andere in den 1950er Jahren. Redei: Ein Satz über die endlichen einfachen Gruppen, Acta Mathematica, Bd. 84, 1950, S.129

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • László Rédei — (1900 ndash; 21 November 1980) was a Hungarian mathematician.He graduated from the University of Budapest and initially worked as a schoolteacher. In 1940 he was appointed professor in the University of Szeged and in 1967 moved to the… …   Wikipedia

  • Rédei — ist der Name folgender Personen: István Rédei (* 1983), ungarischer Handballspieler Károly Rédei, österreich ungarischer Finnougrist László Rédei (1900–1980), ungarischer Mathematiker Diese Seite ist eine Begriffsklärung …   Deutsch Wikipedia

  • Pseudo-anneau — Un pseudo anneau est un ensemble muni d une addition et d une multiplication qui vérifient les mêmes axiomes que celles d un anneau, à ceci près qu on n exige pas la présence d un élément neutre pour la multiplication[1]. Une minorité d auteurs… …   Wikipédia en Français

  • Liste de personnes par nombre d'Erdős — Voici une liste non exhaustive de personnes ayant un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Référence …   Wikipédia en Français

  • Anneau unitaire — Pour les articles homonymes, voir Anneau. En algèbre générale, un anneau unitaire ou simplement anneau, est un ensemble sur lequel deux opérations satisfont certaines des propriétés de l addition et la multiplication des nombres entiers relatifs …   Wikipédia en Français

  • Pseudo-anneau de carré nul —  Ne doit pas être confondu avec Anneau nul. Un pseudo anneau de carré nul est un pseudo anneau sur lequel la multiplication est nulle[1]. Le seul pseudo anneau de carré nul unitaire est l anneau nul, l anneau à un seul élément. Tout groupe… …   Wikipédia en Français

  • List of people by Erdős number — Paul Erdős was one of the most prolific writers of mathematical papers. He collaborated a great deal, having 511 joint authors, a number of whom also have many collaborators. The Erdős number measures the collaborative distance between an author… …   Wikipedia

  • Liste de personnes par nombre d'Erdos — Liste de personnes par nombre d Erdős Liste des personne avec un nombre d Erdős de 0, 1 ou 2. Sommaire 1 #0 2 #1 3 #2 4 Liens externes // …   Wikipédia en Français

  • University of Szeged — Infobox University name=University of Szeged latin name= Universitas Scientiarum Szegediensis motto= Veritas Virtus Libertas (Truth – Bravery – Freedom) and/or Where knowledge and challenge meet established=1872 type=Public rector=Prof. Dr. Gábor …   Wikipedia

  • Szeged Faculty of Sciences — The Faculty of Sciences of the University of Szeged. Notable persons *István Apáthy, zoology *Zoltán Bay, physisist *Jenő Cholnoky, geography *Lipót Fejér, mathematics *István Györffy, botanics *Alfréd Haar, mathematics *László Kalmár, computer… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”