- Copula (Mathematik)
-
Eine Copula (Pl. Copulas oder Copulae) ist eine Funktion, die einen funktionalen Zusammenhang zwischen den Randverteilungsfunktionen verschiedener Zufallsvariablen und ihrer gemeinsamen Wahrscheinlichkeitsverteilung angeben kann.
Mit ihrer Hilfe kann man stochastische Abhängigkeit deutlich komplexer modellieren als beispielsweise mit dem Korrelationskoeffizienten.
Inhaltsverzeichnis
Definition
Eine Copula ist eine multivariate Verteilungsfunktion
, deren eindimensionale Randverteilungen gleichverteilt über dem Intervall [0,1] sind. Formal ausgedrückt bedeutet dies folgendes:
;
, wobei
;
- C is n-steigend, das heißt für jeden Hyperrechteck
, wobei
.
Die Forderung an die Randverteilungen lässt sich wie folgt motivieren: Für
beliebig verteilte Zufallsvariablen
mit stetigen Verteilungen
ist die Zufallsvariable
gleichverteilt über dem Intervall [0,1]. Zusammen mit dem folgenden Satz von Sklar wird die Trennung von Randverteilungen und Abhängigkeiten unter diesen möglich.
Satz von Sklar
Im Folgenden sei
eine Erweiterung der reellen Zahlen.
Sei
eine n-dimensionale Verteilungsfunktion mit eindimensionalen Randverteilungen
. Dann existiert eine n-dimensionale Copula C, sodass für alle
gilt:
Sind alle Fi stetig, so ist die Copula eindeutig.
Fréchet-Hoeffding-Schranken
Für jede n-variate Copula C gilt die untere Fréchet-Hoeffding Schranke
und die obere Fréchet-Hoeffding Schranke
Die obere Schranke M ist selbst eine Copula, die untere Schranke W hingegen nur für n = 2.
Damit lässt sich unter anderem folgern:für alle
Anwendung
Copulae werden eingesetzt, um Rückschlüsse auf die Art der stochastischen Abhängigkeit verschiedener Zufallsvariablen zu erzielen oder um Abhängigkeiten gezielt zu modellieren. Sie werden beispielsweise in der Kreditrisikoanalyse eingesetzt, um Aussagen über einen gehäuften Bankrott mehrerer Schuldner innerhalb eines Anleihenportfolios machen zu können. Analog sind Anwendungen im Versicherungsbereich üblich. Dort stellen gehäuft auftretende Schäden verschiedener Schadenarten ein finanzielles Problem dar. Beispiel hierfür ist ein zu beobachtender Zusammenhang zwischen Sturm- und Hochwasserschäden.
Beispiele für Copulae
- Die einfachste Form der Copula ist die Unabhängigkeitscopula (Produktcopula)
.
- Sie steht für stochastisch unabhängige Zufallsvariablen
, die gemäß der Copula C verteilt sind. In Zeichen:
- Die obere Fréchet-Hoeffding-Schranke, ebenfalls eine Copula, ist gegeben durch
.
- Sie beschreibt perfekte positive stochastische Abhängigkeit (totale positive Korrelation).
- Die untere Fréchet-Hoeffding-Schranke ist nur im bivariaten Fall eine Copula:
- C(u1,u2) = max{u1 + u2 − 1,0}.
- Sie beschreibt eine perfekte negative stochastische Abhängigkeit zweier Zufallsvariablen.
- Die Normal- oder auch Gauß-Copula wird mit Hilfe der Verteilungsfunktion der Normalverteilung
definiert. So ist
- eine Copula, wobei
die bivariate Verteilungsfunktion zweier standard-normalverteilter Zufallsvariablen mit dem Korrelationskoeffizienten ρ ist.
- Erzeugt man Punkte, die gemäß der Normal-Copula mit Parameter ρ = 0.5 verteilt sind, ergibt sich bereits eine leichte Konzentration dieser entlang der Winkelhalbierenden.
- Die Gumbel-Copula wird mit Hilfe der Exponentialfunktion und dem natürlichen Logarithmus definiert
,
- wobei
als Parameter fest zu wählen ist.
- Erzeugt man Punkte, die gemäß der Gumbel-Copula mit Parameter λ > 1 verteilt sind, ergibt sich insbesondere eine Punkthäufung in der Nähe des Punktes (1,1).
Archimedische Copulae
Archimedische Copulae stellen eine Klasse von Copulae dar. Diese lassen sich wie folgt beschreiben:
Sei
eine stetige, streng monoton fallende Funktion mit
. Bezeichne
die Pseudo-Inverse von
, d.h.
Mit Hilfe von
und
lässt sich nun eine bivariate Funktion definieren:
Die Funktion
ist genau dann eine Copula, wenn
konvex ist. In diesem Fall heißt
Erzeuger der Copula. Offensichtlich ist
symmetrisch, d.h.
für alle
.
Beispiele für archimedische Copulae sind:
- Gumbel-Copula: Ihr Erzeuger ist die Funktion φ(t) = ( − ln t)λ mit Parameter
.
Damit ergibt sich
und damit die Gumbel-Copula Cλ(u,v) wie oben.
- Clayton-Copula: Ihr Erzeuger ist die Funktion
mit Parameter Θ > 0.
Damit ist
und die bivariate Clayton-Copula ergibt sich zu:
- Frank-Copula: Ihr Erzeuger ist die Funktion
mit Parameter Θ > 0.
Archimedische Copulae werden oft angewandt, da es sehr einfach ist, Zufallszahlen daraus zu generieren.
Extremwertcopula
Definition
Eine Copula C heißt Extremwertcopula, wenn es die Copula einer multivariaten Extremwertverteilung ist, d. h. es existiert eine multivariate Extremwertverteilung G mit univariaten Rändern
, dass gilt
.
Lemma
Eine Copula C ist genau dann eine Extremwertcopula, wenn für
und t > 0 gilt
.
Ist C eine Extremwertcopula und sind
univariate Extremwertverteilungen, dann ist
eine multivariate Extremwertverteilung.
Literatur
- Nelsen, Roger B.: An Introduction to Copulas (Lecture Notes in Statistics). Springer Verlag, 2006, ISBN 0-387-28659-4
- Sklar, A.: Random variables, distribution functions, and copulas – a personal look backward and forward in Rüschendorf, L., Schweizer, B. und Taylor, M. (eds) Distributions With Fixed Marginals & Related Topics (Lecture Notes - Monograph Series Number 28), 1997, ISBN 0-940600-40-4
- Fischer, Rico: Modellierung von Abhängigkeiten mit Hilfe von Copulas: Anwendung bei der Bestimmung des Value at Risk, Logos Berlin, 2009, ISBN 3-8325-2142-9
Weblinks
- http://www.math.ethz.ch/~baltes/ftp/copchapter.pdf - Modelling Dependence with Copulas and Applications to Risk Management, Embrechts, P., Lindskog, F., McNeil, A. (2003), Handbook of Heavy Tailed Distributions in Finance, ed. S. Rachev, Elsevier, Chapter 8, pp. 329-384. (PDF; 818 KB)
- http://www.math.ethz.ch/~baltes/ftp/pitfalls.pdf - Correlation and dependence in risk management: properties and pitfalls, Embrechts, P., McNeil, A., Straumann, D. (2002), Risk Management: Value at Risk and Beyond, ed. M.A.H. Dempster, Cambridge University Press, Cambridge, pp. 176-223 (PDF; 784 KB)
- C. Schölzel, P. Friederichs (2008), "Multivariate non-normally distributed random variables in climate research – introduction to the copula approach", Nonlinear Processes in Geophysics, 15, 761-772 (open access)
Wikimedia Foundation.