- Edle Metalle
-
Die Edelmetalle im PSE:
Gelb - klassisches Edelmetall;
orange - Halbedelmetall;
hellgelb - kurzlebiges radioaktives EdelmetallH He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Edelmetalle sind Metalle, die besonders korrosionsbeständig sind. Einige Edelmetalle, zum Beispiel Gold und Silber, sind deswegen seit dem Altertum zur Herstellung von Schmuck und Münzen in Gebrauch. Im Laufe der letzten vier Jahrhunderte wurden die Platinmetalle entdeckt, die eine ähnliche Korrosionsbeständigkeit wie Gold zeigen.
Inhaltsverzeichnis
Klassische Edelmetalle
Zu den klassischen Edelmetallen gehören die Platinmetalle sowie Gold und Silber. Teilweise wird auch noch Quecksilber zu den Edelmetallen gezählt, obwohl dieses wesentlich reaktiver als die klassischen Edelmetalle ist. Diese korrodieren (verrosten, oxidieren) bei Raumtemperatur an Luft entweder gar nicht, oder nur äußerst langsam und in sehr geringem Umfang, so wie es beim Silber der Fall ist, wenn es mit (Spuren von) Schwefelwasserstoff in Berührung kommt. Selbst dabei bildet sich nur eine extrem dünne Schicht von schwarzem Silbersulfid. Der Silbergegenstand wird dabei nicht beschädigt. Von Salzsäure werden die Edelmetalle nicht angegriffen. Edelmetalle zeichnen sich ferner dadurch aus, dass viele ihrer Verbindungen thermisch nicht stabil sind. So werden Silberoxid und Quecksilberoxid beim Erhitzen in die Elemente zerlegt.
Halbedelmetalle
Im 19. und 20. Jahrhundert wurde die Theorie der Redoxreaktionen verfeinert. Neue Reaktionswege wurden entdeckt. Des weiteren entwickelte man die elektrochemische Methode der Potentiometrie, mit der man die Stärke von Reduktionsmitteln und Oxidationsmitteln genau messen und vergleichen konnte. Dies gestattete auch eine verfeinerte Einteilung der Metalle nach ihrem edlen oder unedlen Charakter. Zu den Halbedelmetallen gehören demnach solche, die nicht unter Wasserstoffbildung mit wässrigen Lösungen nichtoxidierender Säuren wie zum Beispiel Salzsäure oder verdünnte Schwefelsäure reagieren. Das liegt an ihrem Standardpotential, welches höher als dasjenige des Wasserstoffs ist. Diese Metalle sind auch gegen Luftsauerstoff weitgehend inert. Aus diesem Grund kommen sie in der Natur gelegentlich gediegen vor.
Metalle wie Bismut und Kupfer liegen mit ihrem Standardpotential deutlich näher am Wasserstoff als die klassischen Edelmetalle. An Luft korrodieren sie schneller, und in oxidierenden Säuren wie konzentrierte Schwefelsäure oder halbkonzentrierte (30-prozentige) Salpetersäure lösen sie sich zügig. Im chemischen Sinne sind Halbedelmetalle also alle Metalle, die in der elektrochemischen Spannungsreihe ein positives Standardpotential gegenüber Wasserstoff besitzen, ansonsten aber nicht so korrosionsbeständig wie klassische Edelmetalle sind. Nach dieser Definition ist auch das künstliche und radioaktive Technetium als halbedel zu bezeichnen. Diese Halbedelmetalle nehmen also eine Zwischenstellung zwischen den klassischen edlen und unedlen Metallen ein. Selbst Nickel und Zinn werden von einigen Autoren dazugezählt, obwohl ihr Standardpotential etwas unter dem Wasserstoff liegt.
Kurzlebige radioaktive Edelmetalle
Theoretische Überlegungen aufgrund quantenmechanischer Berechnungen sprechen dafür, dass auch die künstlichen Elemente Bohrium, Hassium, Meitnerium, Darmstadtium, Roentgenium und Ununbium Edelmetalle sind. Praktische Bedeutung kommt diesen Metallen allerdings nicht zu, da sie äußerst instabil sind und sehr schnell (in wenigen Sekunden) radioaktiv zerfallen.
Unedle Metalle
Klar abzugrenzen sind die unedlen Metalle wie Aluminium, Eisen und Blei. Da ihr Standardpotential kleiner als das von Wasserstoff ist, werden sie von nichtoxidierenden Säuren angegriffen. Das kann, wie beim Blei, auch recht langsam erfolgen. "Nichtoxidierend" bedeutet hierbei, dass sich kein stärkeres Oxidationsmittel als das Wasserstoffion in der Lösung befindet.
Weitere korrosionsbeständige Metalle
Neben den Edelmetallen gibt es auch noch einige Metalle, die in Folge ihrer Passivierung mitunter eine hohe Korrosionsbeständigkeit besitzen, die je nach chemischem Milieu auch manche Edelmetalle zum Teil übertrifft. Dies sind die Elemente der 4. Nebengruppe (Titan, Zirconium und Hafnium), die der 5. Nebengruppe (Vanadium, Niob und Tantal) sowie die der 6. Nebengruppe (Chrom, Molybdän und Wolfram). Weitere technisch bedeutende Metalle, die Passivschichten bilden, sind Zink (12. Nebengruppe), Aluminium (3. Hauptgruppe) sowie Silicium und Blei (4. Hauptgruppe).
Reaktionen der Edelmetalle
Mit geeigneten aggressiven Chemikalien kann man alle Edelmetalle in Lösung bringen. Gold und einige Platinmetalle lösen sich zügig in Königswasser. Silber sowie die Halbedelmetalle reagieren lebhaft mit Salpetersäure. Im Bergbau werden Cyanidlösungen in Verbindung mit Luftsauerstoff verwendet, um Gold und Silber aus Gesteinen zu lösen. Der Angriff durch den Luftsauerstoff ist nur möglich, weil sich als Produkte stabile Cyanidokomplexe mit Gold und Silber bilden. Auch im Königswasser ist die Bildung stabiler Komplexverbindungen (Chloridokomplexe) mit entscheidend für die oxidierende Wirkung des Milieus. Edelmetalle verhalten sich im übrigen häufig gar nicht „edel“ gegenüber sehr elektropositiven Metallen, sondern bilden hier häufig bereitwillig und unter Energiefreisetzung Intermetallische Phasen.
Physikalische Auffassung vom Edelmetallcharakter
Im physikalischen Sinn ist die Menge der Edelmetalle noch bedeutend kleiner; es sind nur Kupfer, Silber und Gold. Das Kriterium zur Klassifizierung ist die elektronische Bandstruktur. Die drei aufgeführten Metalle besitzen alle vollständig gefüllte d-Bänder, die damit nicht zur Leitfähigkeit und praktisch nicht zur Reaktivität beitragen. Für Platin gilt dies z. B. nicht. Zwei d-artige Bänder kreuzen das Ferminiveau. Das führt zu einem anderen chemischen Verhalten, weshalb Platin, im Gegensatz zu Gold, auch gern als Katalysator benutzt wird. Besonders auffällig ist der Unterschied bei der Herstellung reiner Metalloberflächen im Ultrahochvakuum. Während z. B. Gold vergleichsweise leicht zu präparieren ist und nach der Präparation lange rein bleibt, bindet sich an Platin oder auch Palladium sehr schnell Kohlenstoffmonoxid.
Im Sprachgebrauch von Sportreportagen, vor allem während der Olympischen Spiele, wird fälschlicherweise auch die Bronze zu den Edelmetallen gezählt.
Siehe auch
Redoxreihe | Unedle Metalle | Edelmetall-Scheidung
Weblinks
Welche Bänder das Fermi-Niveau kreuzen, kann man sich auf der Seite The Fermi Surface Database anschauen.
Edelmetall-Übersicht
Wikimedia Foundation.