- Fréchet-Raum
-
Ein Fréchet-Raum (nach dem französischen Mathematiker Maurice René Fréchet) ist ein topologischer Vektorraum (Funktionalanalysis) mit speziellen Eigenschaften. Fréchet-Räume können als eine Verallgemeinerung von Banach-Räumen angesehen werden.
Die Hauptvertreter von Fréchet-Räumen sind Vektorräume von glatten Funktionen. Diese Räume besitzen keine sinnvollen Banachraumtopologien: Sie lassen sich zwar mit einer beliebigen anderen Vektorraumtopologie ausstatten, die so definierten topologischen Vektorräume sind aber im Allgemeinen nicht vollständig.
Inhaltsverzeichnis
Definition
Ein Fréchet-Raum ist ein lokalkonvexer und vollständiger topologischer Vektorraum mit einer abzählbaren Nullumgebungsbasis.
Eine äquivalente Eigenschaft zum Besitz einer abzählbaren Nullumgebungsbasis ist die Metrisierbarkeit. Ein Fréchet-Raum besitzt keine kanonische Metrik.
Beschreibung der Topologie durch Halbnormen
Wie bei jedem lokalkonvexen topologischen Vektorraum kann auch die Topologie eines Fréchet-Raumes durch eine Familie von Halbnormen beschrieben werden. Die Existenz einer abzählbaren Nullumgebungsbasis garantiert, dass nur abzählbar viele Halbnormen zur Erzeugung der Topologie notwendig sind.
Mittels dieser abzählbaren Familie von Halbnormen kann man in einem Fréchet-Raumes eine Fréchet-Metrik definieren. Das heißt, die Frage nach der Metrisierbarkeit kann sogar konstruktiv beantwortet werden.
Beispiele
Standardbeispiel für nicht normierbare Fréchet-Räumen sind die Räume von glatten Funktionen auf einer kompakten Mannigfaltigkeit oder auf einer kompakten Teilmenge eines endlichdimensionalen reellen Vektorraumes. Ihre lokalkonvexe Topologie ist in kanonischer Weise eine Fréchet-Topologie.
Die wichtigsten nicht normierbaren Fréchet-Räume, die in der Praxis relevant sind, sind nukleare Räume. Dazu gehören die meisten Räume, die in der Theorie der Distributionen auftreten, die Räume holomorpher Funktionen auf einer offenen Menge oder Folgenräume wie der Raum der schnell fallenden Zahlenfolgen. Sie haben z.B. die Montel-Eigenschaft: d.h. jede beschränkte Menge ist relativ kompakt.
Eigenschaften
In vollständigen metrisierbaren Vektorräumen wie etwa Banachräumen oder Fréchet-Räumen gilt der Satz über die offene Abbildung.
Andere Bedeutungen
Ein topologischer Raum, der das Trennungsaxiom T1 erfüllt, wird gelegentlich auch "Fréchet-Raum" genannt. Um Verwechslungen zu vermeiden, wird aber für solche Räume meist der Name T1-Raum verwendet.
Quellen
- Walter Rudin: Functional Analysis. McGraw-Hill, New York 1991. ISBN 0070542368.
Wikimedia Foundation.