Fréchet-Raum

Fréchet-Raum

Ein Fréchet-Raum (nach dem französischen Mathematiker Maurice René Fréchet) ist ein topologischer Vektorraum (Funktionalanalysis) mit speziellen Eigenschaften. Fréchet-Räume können als eine Verallgemeinerung von Banach-Räumen angesehen werden.

Die Hauptvertreter von Fréchet-Räumen sind Vektorräume von glatten Funktionen. Diese Räume besitzen keine sinnvollen Banachraumtopologien: Sie lassen sich zwar mit einer beliebigen anderen Vektorraumtopologie ausstatten, die so definierten topologischen Vektorräume sind aber im Allgemeinen nicht vollständig.

Inhaltsverzeichnis

Definition

Ein Fréchet-Raum ist ein lokalkonvexer und vollständiger topologischer Vektorraum mit einer abzählbaren Nullumgebungsbasis.

Eine äquivalente Eigenschaft zum Besitz einer abzählbaren Nullumgebungsbasis ist die Metrisierbarkeit. Ein Fréchet-Raum besitzt keine kanonische Metrik.

Beschreibung der Topologie durch Halbnormen

Wie bei jedem lokalkonvexen topologischen Vektorraum kann auch die Topologie eines Fréchet-Raumes durch eine Familie von Halbnormen beschrieben werden. Die Existenz einer abzählbaren Nullumgebungsbasis garantiert, dass nur abzählbar viele Halbnormen zur Erzeugung der Topologie notwendig sind.

Mittels dieser abzählbaren Familie von Halbnormen kann man in einem Fréchet-Raumes eine Fréchet-Metrik definieren. Das heißt, die Frage nach der Metrisierbarkeit kann sogar konstruktiv beantwortet werden.

Beispiele

Standardbeispiel für nicht normierbare Fréchet-Räumen sind die Räume von glatten Funktionen auf einer kompakten Mannigfaltigkeit oder auf einer kompakten Teilmenge eines endlichdimensionalen reellen Vektorraumes. Ihre lokalkonvexe Topologie ist in kanonischer Weise eine Fréchet-Topologie.

Die wichtigsten nicht normierbaren Fréchet-Räume, die in der Praxis relevant sind, sind nukleare Räume. Dazu gehören die meisten Räume, die in der Theorie der Distributionen auftreten, die Räume holomorpher Funktionen auf einer offenen Menge oder Folgenräume wie der Raum der schnell fallenden Zahlenfolgen. Sie haben z.B. die Montel-Eigenschaft: d.h. jede beschränkte Menge ist relativ kompakt.

Eigenschaften

In vollständigen metrisierbaren Vektorräumen wie etwa Banachräumen oder Fréchet-Räumen gilt der Satz über die offene Abbildung.

Andere Bedeutungen

Ein topologischer Raum, der das Trennungsaxiom T1 erfüllt, wird gelegentlich auch "Fréchet-Raum" genannt. Um Verwechslungen zu vermeiden, wird aber für solche Räume meist der Name T1-Raum verwendet.

Quellen


Wikimedia Foundation.

Игры ⚽ Нужно решить контрольную?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Frechet-Raum — Ein Fréchet Raum (nach dem französischen Mathematiker Maurice René Fréchet) ist ein topologischer Vektorraum (Funktionalanalysis) mit speziellen Eigenschaften. Fréchet Räume können als eine Verallgemeinerung von Banach Räumen angesehen werden.… …   Deutsch Wikipedia

  • Frechet-Metrik — Fréchet Metrik (nach Maurice René Fréchet) ist ein Begriff aus der Funktionalanalysis. Sie stellt eine Verbindung zwischen Metrik und Norm her. Inhaltsverzeichnis 1 Definition 2 Anwendungen 3 Literatur 4 Siehe auch …   Deutsch Wikipedia

  • Frechet — Fréchet ist der Name von Maurice René Fréchet (1878 1973), französischer Mathematiker Nach diesem benannt sind: Fréchet Filter, Mengenfilter Fréchet Ableitung, verallgemeinert den Begriff der Ableitung aus der Differentialrechnung auf normierte… …   Deutsch Wikipedia

  • Fréchet-Metrik — (nach Maurice René Fréchet) ist ein Begriff aus der Funktionalanalysis. Sie stellt eine Verbindung zwischen Metrik und Norm her. Inhaltsverzeichnis 1 Definition 2 Anwendungen 3 Literatur 4 …   Deutsch Wikipedia

  • Fréchet — ist der Name von Maurice René Fréchet (1878–1973), französischer Mathematiker Nach diesem benannt sind: Fréchet Filter, Mengenfilter Fréchet Ableitung, verallgemeinert den Begriff der Ableitung aus der Differentialrechnung auf normierte Räume… …   Deutsch Wikipedia

  • Raum mit Gewebe — Räume mit Gewebe werden in der mathematischen Disziplin der Funktionalanalysis betrachtet. Sie erlauben im Zusammenspiel mit den ultrabornologischen Räumen Verallgemeinerungen zweier zentraler Sätze aus der Theorie der Banachräume, das sind der… …   Deutsch Wikipedia

  • Raum (Mathematik) — Beziehungen zwischen den mathematischen Räumen Der Raum ist in der Mathematik ein Begriff, für den es keine in allen Teilgebieten zutreffende Definition gibt. Jedenfalls ist er eine mit einer Struktur versehene Menge. In verschiedenen… …   Deutsch Wikipedia

  • Frechet-Ableitung — Die Fréchet Ableitung (nach Maurice René Fréchet) verallgemeinert den Begriff der Ableitung aus der üblichen Differentialrechnung im auf normierte Räume. Inhaltsverzeichnis 1 Definition 1.1 Äquivalente Definition 2 Beispiele …   Deutsch Wikipedia

  • Fréchet-Differential — Die Fréchet Ableitung (nach Maurice René Fréchet) verallgemeinert den Begriff der Ableitung aus der üblichen Differentialrechnung im auf normierte Räume. Inhaltsverzeichnis 1 Definition 1.1 Äquivalente Definition 2 Beispiele …   Deutsch Wikipedia

  • Fréchet-Ableitung — Die Fréchet Ableitung (nach Maurice René Fréchet) verallgemeinert den Begriff der Ableitung aus der üblichen Differentialrechnung im auf normierte Räume. Bei Abbildungen zwischen endlichdimensionalen Räumen stimmt sie mit der üblichen totalen… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”