Holomorphe Funktion

Holomorphe Funktion
Ein rechteckiges Gitter wird mit der holomorphen Funktion f in sein Abbild überführt

Holomorphie (von gr. holos, „ganz“ und morphe , „Form“) ist eine Eigenschaft von bestimmten komplexwertigen Funktionen, die in der Funktionentheorie (einem Teilgebiet der Mathematik) behandelt werden. Eine Funktion f: U \rightarrow \mathbb{C} für eine offene Menge U \subset \mathbb{C} heißt holomorph, falls sie in jedem Punkt aus U komplex differenzierbar ist.

Auch wenn die Definition analog zur reellen Differenzierbarkeit ist, zeigt sich in der Funktionentheorie, dass die Holomorphie eine sehr starke Eigenschaft ist. Sie produziert nämlich eine Vielzahl von Phänomenen, die im Reellen kein Pendant besitzen. Beispielsweise ist eine holomorphe Funktion stets unendlich oft (stetig) differenzierbar und lässt sich lokal in jedem Punkt in eine Potenzreihe entwickeln.

Inhaltsverzeichnis

Definitionen

Es sei U \subset \mathbb{C} eine offene Teilmenge der komplexen Ebene und z_0\in U ein Punkt dieser Teilmenge. Eine Funktion f:U \rightarrow \mathbb{C} heißt komplex differenzierbar im Punkt z0, falls der Grenzwert

\lim_{h \rightarrow 0}\frac{f(z_0+h)-f(z_0)}{h}

existiert. In diesem Fall bezeichnet man diesen Grenzwert als \ f'(z_0).

Die Funktion f heißt holomorph im Punkt z0, falls eine Umgebung von z0 existiert, in der f komplex differenzierbar ist. Ist f auf ganz \mathbb{C} holomorph, so nennt man f eine ganze Funktion.

Erläuterungen

Unterschied zwischen komplexer und reeller Differenzierbarkeit

Nicht jede reell differenzierbare Funktion f: U \rightarrow \mathbb{R}^2 mit U \subset \mathbb{R}^2 ist, wenn man sie in naheliegender Weise als Funktion auf \mathbb{C} auffasst, auch holomorph. Im Reellen heißt eine Funktion differenzierbar, falls eine  \mathbb{R} -lineare Abbildung L existiert, so dass die Gleichung

f(x + h) = f(x) + L(h) + r(h)

gilt, wobei r eine Funktion mit

\lim_{h \rightarrow 0} \frac{r(h)}{|h|} = 0

ist. Für holomorphe Funktionen muss L \mathbb{C}-linear sein, was eine starke Einschränkung bedeutet. Für die Darstellungsmatrix A von L bedeutet es, dass sie die Form

A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}

hat.

Zusammenhang zwischen komplexer und reeller Differenzierbarkeit

Eine Funktion f\left(x+iy\right)=u\left(x,y\right) + i\,v\left(x,y\right) ist genau dann komplex differenzierbar, wenn u,v stetig partiell differenzierbar sind und die cauchy-riemannschen Differentialgleichungen

\frac{\partial u}{\partial x}= \frac{\partial v}{\partial y} und \frac{\partial u}{\partial y}= -\frac{\partial v}{\partial x}

erfüllt sind.

Äquivalente Eigenschaften holomorpher Funktionen einer Variablen

In einer Umgebung einer komplexen Zahl sind folgende Eigenschaften komplexer Funktionen gleichwertig:

  1. Eine Funktion ist einmal komplex-differenzierbar.
  2. Eine Funktion ist beliebig oft komplex-differenzierbar.
  3. Real- und Imaginärteil erfüllen die cauchy-riemannschen Differentialgleichungen und sind zumindest einmal stetig reell-differenzierbar.
  4. Die Funktion lässt sich in eine komplexe Potenzreihe entwickeln.
  5. Das Wegintegral der Funktion über einen beliebigen geschlossenen zusammenziehbaren Weg verschwindet.
  6. Die Funktionswerte im Inneren einer Kreisscheibe lassen sich aus den Funktionswerten am Rand mit Hilfe der cauchyschen Integralformel ermitteln.
  7. Es gilt
    \frac{\partial f}{\partial \bar z}=0,
    wobei \tfrac{\partial f}{\partial \bar z} der Cauchy-Riemann-Operator ist, der durch \tfrac\partial{\partial\bar z}\colon{=}\tfrac12\left(\tfrac\partial{\partial x}+i\tfrac\partial{\partial y}\right) definiert ist.

Beispiele

Ganze Funktionen

Ganze Funktionen sind auf ganz \mathbb{C} holomorph. Beispiele dafür sind:

  • jedes Polynom \textstyle z\mapsto\sum_{j=0}^na_jz^j mit Koeffizienten a_j \in \mathbb{C}

Holomorphe, nicht ganze Funktionen

  • Die Logarithmusfunktion log  lässt sich in allen Punkten aus \C \setminus {]{-}\infty,0]} in eine Potenzreihe entwickeln und ist somit auf der Menge \C \setminus {]{-}\infty,0]} holomorph.

Nirgends holomorphe Funktionen

Folgende Funktionen sind in keinem z\in\mathbb{C} komplex differenzierbar und damit auch nirgendwo holomorph:

  • die Betragsfunktion z\mapsto |z|
  • die Projektionen auf den Realteil z\mapsto\mathrm{Re}(z) beziehungsweise auf den Imaginärteil z\mapsto\mathrm{Im}(z)
  • die komplexe Konjugation z\mapsto\overline{z}

Eigenschaften

Sind f, g: U \rightarrow \mathbb{C} komplex differenzierbar in z \in U, so auch f + g und fg. Ist g(z)\neq 0, so ist auch \tfrac{f}{g} in z\in U komplex differenzierbar. Es gelten ferner Summen-, Produkt-, Quotientenregel und Kettenregel.

Es folgt eine Auflistung fundamentaler Eigenschaften holomorpher Funktionen, die allesamt kein Pendant in der reellen Theorie besitzen. In der Folge sei U \subset \mathbb C ein Gebiet und f: U \rightarrow \mathbb C holomorph.

Cauchyscher Integralsatz

Ist U \subset \mathbb{C} einfach zusammenhängend und γ ein Zyklus in U, so gilt der cauchysche Integralsatz

\int_\gamma f(z)\mathrm dz=0\!\,.

Cauchysche Integralformel

Hauptartikel: Cauchysche Integralformel

Sei D: = Ur(a) die offene Kreisscheibe mit Radius r um den Punkt a \in U, die ganz in U liegt. Dann gilt für alle z \in D und k \in\N_0 die cauchysche Integralformel

f^{(k)}(z) = \frac{k!}{2\pi i}\int_{\partial D}\frac{f(\zeta)}{(\zeta-z)^{k+1}}\mathrm d\zeta.

Der Funktionswert eines Punktes in einem Gebiet hängt also nur von den Funktionswerten am Rand dieses Gebietes ab. Für mehrdimensionale holomorphe Funktionen lässt sich die cauchysche Integralformel durch Induktion verallgemeinern. Eine weitere mehrdimensionale Verallgemeinerung der Aussage ist die bochner-martinellische Integralformel.

Holomorphie und Analytizität

Eine Folgerung aus der cauchyschen Integralformel ist, dass in der komplexen Ebene der Begriff der Analytizität äquivalent zur Holomorphie ist: Jede in z0 holomorphe Funktion ist in z0 analytisch. Umgekehrt lässt sich jede in z0 analytische Funktion zu einer in z0 holomorphen Funktion fortsetzen.

Da Potenzreihen unendlich oft komplex differenzierbar sind (und zwar durch gliedweise Differentiation), erhält man insbesondere, dass holomorphe Funktionen unendlich oft differenzierbar und alle ihre Ableitungen wiederum holomorphe Funktionen sind. Hieran erkennt man schon deutliche Unterschiede zur reellen Differentialrechnung.

Identitätssatz

Es zeigt sich, dass eine holomorphe Funktion schon durch sehr wenig Information eindeutig bestimmt ist. Der Identitätssatz besagt, dass zwei holomorphe Funktionen auf einem Gebiet G \subset \C bereits dann auf G identisch sind, wenn sie auf einer geeigneten Teilmenge M \subset G übereinstimmen. Dabei muss die Übereinstimmungsmenge M noch nicht mal ein kontinuierlicher Weg sein, es reicht aus, dass M einen Häufungspunkt in G besitzt. Diskrete Teilmengen reichen hierfür hingegen nicht aus.

Weiteres

  • Konvergiert eine Folge (f_n)_{n \in \mathbb{N}} holomorpher Funktionen kompakt auf U gegen die Grenzfunktion f, so ist f wieder holomorph, und man kann Limesbildung und Differentiation vertauschen, das heißt, die Folge (f'n) konvergiert kompakt gegen f'. (Satz von Weierstraß).
  • Jede auf einem einfach zusammenhängenden Gebiet D\subseteq\mathbb{R}^2 zweimal stetig differenzierbare harmonische Funktion u ist Realteil einer komplex differenzierbaren Funktion f: \displaystyle f(x+\mathrm{i} y)=u(x,y)+\mathrm{i} v(x,y). Die reelle Funktion v=\operatorname{Im} f erfüllt ebenfalls \triangle v=0. Sie wird als konjugiert harmonisch zu u bezeichnet und f als komplexes Potential.

Biholomorphe Funktionen

Hauptartikel: Biholomorphe Funktion

Eine Funktion, die holomorph, bijektiv und deren Umkehrfunktion holomorph ist, nennt man biholomorph oder konform. Aus dem Satz über implizite Funktionen folgt für holomorphe Funktionen einer Veränderlicher schon, dass eine bijektive, holomorphe Funktion stets eine holomorphe Umkehrabbildung besitzt. Im nächsten Abschnitt werden holomorphe Funktionen mehrerer Veränderlicher eingeführt. In diesem Fall garantiert der Satz von Osgood diese Eigenschaft. Somit kann man sagen, dass bijektive, holomorphe Abbildung biholomorph sind.

Aus Sicht der Kategorientheorie ist eine biholomorphe Abbildung ein Isomorphismus.

Holomorphie mehrerer Veränderlicher

Im n-dimensionalen komplexen Raum

Sei D \subset \mathbb{C}^n eine komplexe offene Teilmenge. Eine Abbildung f \colon D \rightarrow \mathbb{C}^m heißt holomorph, falls f = (f_1, \ldots , f_m) in jeder Teilfunktion und jeder Variablen holomorph ist. Mit dem Wirtinger-Kalkül \textstyle \frac{\partial}{\partial z^j} und \textstyle \frac{\partial}{\partial \overline{z}^j} steht ein Kalkül zur Verfügung mit dem man die partiellen Ableitungen einer komplexen Funktion einfacher verwalten kann. Jedoch haben holomorphe Funktionen mehrerer Veränderliche nicht mehr so viele schöne Eigenschaften.

So gilt für Funktionen f \colon D \to \C der cauchysche Integralsatz nicht und der Identitätssatz ist nur noch in einer abgeschwächten Version gültig. Für diese Funktionen kann allerdings die Integralformel von Cauchy durch Induktion auf n Dimensionen verallgemeinert werden. Im Jahr 1944 konnte Salomon Bochner sogar noch eine Verallgemeinerung der n-dimensionalen cauchyschen Integralformel beweisen. Diese trägt den Namen Bochner-Martinelli-Formel.

In der komplexen Geometrie

Auch in der komplexen Geometrie werden holomorphe Abbildungen betrachtet. So kann man holomorphe Abbildungen zwischen riemannschen Flächen beziehungsweise zwischen komplexen Mannigfaltigkeiten analog zu differenzierbaren Funktionen zwischen glatten Mannigfaltigkeiten definieren. Außerdem gibt es ein für die Integrationstheorie wichtiges Pendant zu den glatten Differentialformen, die holomorphe Differentialformen heißen.

Literatur

Standardwerke

Einführungen

  • Klaus Jänich: (Die ersten beiden Auflagen unterscheiden sich deutlich von den folgenden. Unter anderem fehlen ab der dritten Auflage die vier „Stern“-Kapitel zu Wirtinger-Kalkül, riemannschen Flächen, riemannschen Flächen eines holomorphen Keimes und algebraischen Funktionen.)
  • Einführung in die Funktionentheorie. 2. Auflage. Springer-Verlag, Berlin/Heidelberg 1980, ISBN 3-540-10032-6.
  • Funktionentheorie – Eine Einführung. 6. Auflage. Springer-Verlag, Berlin/Heidelberg 2004, ISBN 3-540-20392-3.
  • Wolfgang Fischer, Ingo Lieb: Funktionentheorie – Komplexe Analysis in einer Veränderlichen. 8. Auflage. Vieweg, Braunschweig/Wiesbaden 2003, ISBN 3-528-77247-6.

Ausführliche Darstellungen der Funktionentheorie

  • Eberhard Freitag, Rolf Busam: Funktionentheorie 1. 3. Auflage. Springer, 2000, ISBN 3-540-67641-4.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • holomorphe Funktion — holomọrphe Funktion,   reguläre Funktion, Mathematik: eine komplexwertige Funktion f (z) einer komplexen Variablen z, die in einem Gebiet der komplexen Zahlen differenzierbar ist. (analytische Funktion, Funktionentheorie) …   Universal-Lexikon

  • Holomorphe Halbgruppe — Eine analytische Halbgruppe, manchmal auch holomorphe Halbgruppe genannt, ist eine Familie von beschränkten linearen Operatoren von einem reellen oder komplexen Banachraum X in sich, wobei ein komplexwertiger Sektor und ein Winkel ist.… …   Deutsch Wikipedia

  • Riemannsche ζ-Funktion — Die riemannsche Zeta Funktion in der komplexen Ebene Die in obigem Bild verwendete Kolo …   Deutsch Wikipedia

  • Periodische Funktion — In der Mathematik spricht man von Periodizität, wenn sich die Werte einer Funktion oder Folge in regelmäßigen Abständen wiederholen. Die Funktion oder Folge wird periodisch genannt, die Abstände zwischen dem Auftreten desselben Funktionswertes… …   Deutsch Wikipedia

  • Dedekindsche Eta-Funktion — Die Dedekindsche η Funktion in der komplexen Ebene Die nach dem deutschen Mathematiker Richard Dedekind benannte η Funktion ist eine auf der oberen Halbebene holomorphe Funktion. Sie spielt eine wichtige Rolle in der Theorie d …   Deutsch Wikipedia

  • Glatte Funktion — Eine glatte Funktion ist eine mathematische Funktion, die stetig und unendlich oft differenzierbar ist. Die Bezeichnung glatt ist durch die Anschauung motiviert. Der Graph einer glatten Funktion hat keine „Ecken“, also Stellen, an der sie nicht… …   Deutsch Wikipedia

  • Subharmonische Funktion — In der Mathematik bezeichnen subharmonische und superharmonische Funktionen wichtige Klassen von Funktionen, die ihre Anwendungen in der Theorie Partieller Differentialgleichungen, Funktionentheorie und Potentialtheorie haben. Subharmonische… …   Deutsch Wikipedia

  • Meromorphe Funktion — Für viele Fragestellungen der Funktionentheorie ist der Begriff der holomorphen Funktion zu speziell. Dies liegt daran, dass der Kehrwert einer holomorphen Funktion f an einer Nullstelle von f eine Definitionslücke hat und somit dort auch nicht… …   Deutsch Wikipedia

  • Dedekindsche η-Funktion — Die Dedekindsche η Funktion in der komplexen Ebene Die nach dem deutschen Mathematiker Richard Dedekind benannte η Funktion ist eine auf der oberen Halbebene holomorphe Funktion. Sie spielt eine wichtige Rolle in der Theor …   Deutsch Wikipedia

  • Lokal konstante Funktion — In der Mathematik heißt eine Funktion von einem topologischen Raum T in eine Menge M lokal konstant, wenn für jedes eine Umgebung U von x existiert, auf der f konstant ist. Eigenschaften Jede konstante Funktion ist auch lokal …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”