- Gattermann-Koch-Synthese
-
Die Gattermann-Synthese wird verwendet, um aromatische Aldehyde aus Phenolen oder anderen Aromaten zu synthetisieren. Benannt wurde sie nach dem Goslarer Chemiker Ludwig Gattermann.
Die Gattermann-Synthese kann auch verwendet werden, um einzelne Kohlenwasserstoffverbindungen, Heterocyclen wie Furan-, Pyrrol- und Indolderivate sowie Thiophen zu synthetisieren.
Die Gattermann-Synthese ist eine Variante der Friedel-Crafts-Acylierung.
Inhaltsverzeichnis
Gattermann-Reaktion
Als Edukte dienen Aromaten, die mit Blausäure und Chlorwasserstoff zu formylierten Aromaten umgesetzt werden. Die Synthese verläuft dabei über Zinkchlorid (ZnCl2) oder Aluminiumchlorid (AlCl3) als Katalysator. Unter Konjugation von Edukten und Katalysator kommt es zur Bildung eines Pentadienyl-Kations (siehe Abbildung). Verwendet man mehrwertige Phenole oder Phenolether, so ist kein Katalysator erforderlich.
Varianten
Gattermann-Adams-Reaktion
Heute wird meist nicht mehr, wie in der Gattermann-Reaktion, mit freier Blausäure gearbeitet. Die Gattermann-Adams-Reaktion beschreibt deren Entstehung während der Synthese. Dabei wird aus Zink(II)-cyanid unter Einwirkung von Chlorwasserstoff während der Reaktion die Blausäure freigesetzt. Die Aktivität des dabei entstehenden Zink(II)-chlorids reicht aus, um als Katalysator bei der Umsetzung mit reaktionsfähigeren Phenolen zu wirken. Bei der Reaktion mit trägeren Phenolen muss zusätzlich Aluminiumchlorid als Katalysator zugesetzt werden.
Gattermann-Koch-Reaktion
Die Gattermann-Koch-Synthese wurde nach den deutschen Chemikern Ludwig Gattermann und Julius Arnold Koch benannt.[1] Sie ist der Gattermann-Synthese ähnlich, man verwendet jedoch Kohlenmonoxid und Chlorwasserstoff mit Aluminiumchlorid und Kupfer(I)-chlorid als Katalysatoren. Das Gemisch reagiert wie das nur bei der Temperatur von flüssiger Luft beständige Formylchlorid, deswegen entsteht auch hier ein formylierter Aromat. Die Gattermann-Koch-Synthese muss unter Ausschluss von Wasser stattfinden.
Mechanismus
Folgender Mechanismus gilt für die elektrophile aromatische Substitution als bewiesen:
Einzelnachweise
- ↑ Gattermann, L.; Koch, J. A.: Eine Synthese aromatischer Aldehyde. In: Ber.. 30, 1897, S. 1622. doi:10.1002/cber.18970300288
Literatur
- Becker, Heinz G.O.: Organikum, 22. Auflage, Wiley-VCH, Weinheim, 2004, ISBN 3-527-31148-3
- Hans Beyer, Wolfgang Walter: Lehrbuch der Organischen Chemie; S. Hirzel Verlag, Stuttgart - Leipzig 1998, 23. überarb. und aktualisierte Auflage; ISBN 3-7776-0808-4
- Organikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1976
Wikimedia Foundation.