Gauss-Filter

Gauss-Filter
Betragsfrequenzgang von H(jω) eines Gauß-Filters mit normierter Frequenz und einer Bandbreite B von 1.
Impulsantwort h(t) eines Gauß-Filters

Gauß-Filter sind Frequenzfilter, welche bei der Sprungantwort keine Überschwingung aufweisen und gleichzeitig maximale Flankensteilheit im Übergangsbereich aufweisen. Als Besonderheit besitzt bei diesem Filter sowohl die Übertragungsfunktion als auch die Impulsantwort den Verlauf einer gaußschen Glockenkurve, wie in den Abbildungen rechts dargestellt, wovon sich auch der Name dieses Filtertyps ableitet.

Anwendungsbereiche dieses Filters liegen bei digitalen Modulationsverfahren und im Bereich der Bildverarbeitung.

Inhaltsverzeichnis

Übertragungsfunktion

Der Betrag der Übertragungsfunktion H(jω) ist bei Gauß-Filtern gegeben durch

|H(j\omega)| = e^{- \left( {\frac{\omega}{2 \alpha}} \right) ^2}

mit der Konstanten α

\alpha = \frac{\pi}{\sqrt{\ln(\sqrt{2})}}.

Die Impulsantwort eines Gauß-Filters lautet

h(t) = \frac{\alpha}{\sqrt{\pi}} e^{{-(\alpha t)}^2}.

Anwendungen

Digitale Signalverarbeitung

Ein Rechteckimpuls, blau punktiert dargestellt, wird durch die Impulsformung eines Gauß-Filters in den rot dargestellten Signalverlauf übergeführt.

Gauß-Filter besitzen eine konstante, minimale Gruppenlaufzeit im Sperr- und Durchlassbereich. Dies erlaubt den Einsatz dieses Filter primär zur Impulsformung mit Anwendungsbereichen in der digitalen Signalverarbeitung.

Die Impulsformung findet sich bei digitalen Modulationsverfahren wie dem Gaussian Frequency Shift Keying (GMSK), da damit die einzelnen, meist rechteckförmigen Sendesymbole in Impulse der gaußschen Glockenkurve mit geringeren Bandbreitenbedarf als die ursprünglichen rechteckförmigen Sendesymbole umgewandelt werden können. Damit ist eine höhere spektrale Effizienz des Modulationsverfahrens verbunden.

In Mobilfunksystemen, wie dem GSM, werden Gauß-Filter im Rahmen der GMSK-Modulation auf der Funkschnittstelle zur Übertragung der digitalen Sprach- und Steuerinformationen eingesetzt.

Bildverarbeitung

In der Bildverarbeitung werden Gauß-Filter zur Glättung oder „Weichzeichnen“ des Bildinhaltes verwendet. Es kann damit das Bildrauschen vermindert werden: Kleinere Strukturen gehen verloren, grobere Strukturen bleiben dagegen erhalten. Spektral kommt die Glättung einem Tiefpassfilter gleich.

Da ein Bild zwei Dimensionen aufweist, muss für die Bildverarbeitung die Impulsantwort auf zwei Dimensionen erweitert werden. Die Impulsantwort besitzt zwei Argumente x und y für jede Raumrichtung:

h(x,y) = \frac{\alpha}{\sqrt{\pi}} e^{- \alpha^2 (x^2 + y^2)}.

Für praktische Realisierungen im Rahmen der digitalen Bildverarbeitung wird die diskrete Impulsantwort meist in Form einer zweidimensionalen Matrix verwendet.

Alternativ wird in der Literatur bei der Beschreibung von Gauß-Filtern statt der Konstanten α dazu gleichwertig die Varianz σ2 in dem Ausdruck der Impulsantwort verwendet − was das mathematische Naheverhältnis der Impulsantwort eines Gauß-Filters zu der Funktion der zweidimensionalen Normalverteilung ausdrückt:

h(x,y) = \frac{1}{\sqrt{\sigma^2{2\pi}}}e^{-\frac{x^2+y^2}{2\sigma^2}}.

Literatur

  • Karl Dirk Kammeyer, Volker Kühn: MATLAB in der Nachrichtentechnik. 1 Auflage. J. Schlembach Fachverlag, 2001, ISBN 3-935340-05-2. 

Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Filter (Bildverarbeitung) — Die (digitale) Bildverarbeitung nutzt die Mittel der Signalverarbeitung zur Aufbereitung dies sind Bildvorverarbeitungsroutinen wie Kalibrierung, Restauration, Rekonstruktion zur Speicherung und zur Darstellung von visuellen 2D bzw. 3D… …   Deutsch Wikipedia

  • List of topics named after Carl Friedrich Gauss — Carl Friedrich Gauss (1777 ndash; 1855) is the eponym of all of the topics listed below. Topics including Gauss *Carl Friedrich Gauss Prize, a mathematics award *Degaussing, to demagnetize an object *Gauss (unit), a unit of magnetic field (B)… …   Wikipedia

  • Kalman-Bucy-Filter — Das Kalman Filter ist ein nach seinem Entdecker Rudolf E. Kálmán benannter Satz von mathematischen Gleichungen. Mithilfe dieses Filters sind bei Vorliegen lediglich fehlerbehafteter Beobachtungen Rückschlüsse auf den exakten Zustand von… …   Deutsch Wikipedia

  • Kalman-Filter — Das Kalman Filter ist ein nach seinem Entdecker Rudolf E. Kálmán benannter Satz von mathematischen Gleichungen. Mithilfe dieses Filters sind bei Vorliegen lediglich fehlerbehafteter Beobachtungen Rückschlüsse auf den Zustand von vielen der… …   Deutsch Wikipedia

  • Kálmán-Filter — Das Kalman Filter ist ein nach seinem Entdecker Rudolf E. Kálmán benannter Satz von mathematischen Gleichungen. Mithilfe dieses Filters sind bei Vorliegen lediglich fehlerbehafteter Beobachtungen Rückschlüsse auf den exakten Zustand von… …   Deutsch Wikipedia

  • Particle filter — Particle filters, also known as sequential Monte Carlo methods (SMC), are sophisticated model estimation techniques based on simulation. They are usually used to estimate Bayesian models and are the sequential ( on line ) analogue of Markov chain …   Wikipedia

  • Fast Kalman filter — The fast Kalman filter (FKF), devised by Antti Lange (1941 ), is an extension of the Helmert Wolf blockingfn|1 (HWB) method from geodesy to real time applications of Kalman filtering (KF) such as satellite imaging of the Earth. Kalman filters are …   Wikipedia

  • Texture-Based Volume Rendering — ist ein Verfahren zur räumlichen Darstellung von Schnittbildern wie sie bei CT, oder MRT Aufnahmen entstehen. Bei diesem Verfahren werden Texturen des darzustellenden Volumens geometrisch als parallele Schichten/Ebenen aneinander gelegt (Slicing) …   Deutsch Wikipedia

  • optics — /op tiks/, n. (used with a sing. v.) the branch of physical science that deals with the properties and phenomena of both visible and invisible light and with vision. [1605 15; < ML optica < Gk optiká, n. use of neut. pl. of OPTIKÓS; see OPTIC,… …   Universalium

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”