Global System for Mobile Communications

Global System for Mobile Communications
GSM-Logo (seit 2000)
GSM-Logo (bis 2000)

Das Global System for Mobile Communications (früher Groupe Spécial Mobile, GSM) ist ein Standard für volldigitale Mobilfunknetze, der hauptsächlich für Telefonie, aber auch für leitungsvermittelte und paketvermittelte Datenübertragung sowie Kurzmitteilungen (Short Messages) genutzt wird. Es ist der erste Standard der sogenannten zweiten Generation („2G“) als Nachfolger der analogen Systeme der ersten Generation (in Deutschland: A-Netz, B-Netz und C-Netz) und ist der weltweit am meisten verbreitete Mobilfunk-Standard.

GSM wurde mit dem Ziel geschaffen, ein mobiles Telefonsystem anzubieten, das Teilnehmern eine europaweite Mobilität erlaubte und mit ISDN oder herkömmlichen analogen Telefonnetzen kompatible Sprachdienste anbot.

In Deutschland ist GSM die technische Grundlage der D- und E-Netze. Hier wurde GSM 1992 eingeführt, was zur raschen Verbreitung von Mobiltelefonen in den 1990er-Jahren führte. Der Standard wird heute in 670 GSM-Mobilfunknetzen in rund 200 Ländern und Gebieten der Welt als Mobilfunkstandard genutzt; dies entspricht einem Anteil von etwa 78 Prozent aller Mobilfunkkunden. Es existieren später hinzugekommene Erweiterungen des Standards wie HSCSD, GPRS und EDGE zur schnelleren Datenübertragung. Zum Zutritt in die Netze stehen insgesamt ca. 1700 verschiedene Mobiltelefonmodelle zur Verfügung.

Im März 2006 nutzten weltweit 1,7 Milliarden Menschen GSM und täglich kommen eine Million neue Kunden dazu – hauptsächlich aus den Wachstumsmärkten Afrika, Indien, Lateinamerika und Asien. Rechnet man alle Mobilfunkstandards zusammen, so sind weltweit ca. 2 Milliarden Menschen mobiltelefonisch erreichbar. Das gaben die GSM Association und die GSA im Oktober 2005 bekannt. Nach Angaben der Deutschen Bank wurden im Jahr 2003 277 Milliarden US-Dollar mit GSM-Technik umgesetzt.

GSM-Mobiltelefon von Siemens (SX1) aus dem Jahr 2004

Inhaltsverzeichnis

Die Entstehung von GSM

Ende der 1950er Jahre nahmen die ersten analogen Mobilfunknetze in Europa ihren Betrieb auf; in Deutschland war dies das A-Netz. Ihre Bedienung war jedoch kompliziert, und sie verfügten nur über Kapazitäten für wenige tausend Teilnehmer. Zudem gab es innerhalb Europas nebeneinander mehrere verschiedene Systeme, die zwar teilweise auf dem gleichen Standard beruhten, sich aber in gewissen Details unterschieden. Bei der nachfolgenden Generation der digitalen Netze sollte eine ähnliche Situation vermieden werden.

erste GSM-Telefone (1991)
  • 1982: Bei der CEPT (Europäische Konferenz der Verwaltungen für Post und Telekommunikation) wird die Groupe Spécial Mobile (etwa Arbeitsgruppe für Mobilfunk) eingerichtet. Ihre Aufgabe ist es, einen einheitlichen pan-europäischen Mobilfunkstandard zu entwickeln. Beteiligt sind 26 europäische Telekommunikationsunternehmen.
  • 1985: Deutschland, Italien und Frankreich unterzeichnen einen ersten Entwicklungsvertrag für den neuen Standard.
  • 1987: 17 GSM-Netzbetreiber in spe aus 15 europäischen Ländern bilden eine Kooperation und unterzeichnen am 7. September in Kopenhagen das GSM MoU (Memorandum of Understanding).
  • 1989: Die Groupe Spécial Mobile wird ein Technical Committee beim Europäischen Institut für Telekommunikationsnormen (ETSI), das durch die CEPT 1988 gegründet worden war. Das Projekt erhielt zusätzliche Dynamik, weil am ETSI Netzbetreiber, Hersteller und Regulierer gemeinsam tätig waren.
  • 1989: In Deutschland erhalten die Deutsche Bundespost und Mannesmann die Lizenz, je ein Netz auf GSM-Basis aufzubauen (die sogenannten D-Netze).
  • 1990: Die Spezifikationen der Phase 1 des GSM 900-Standards werden eingefroren, d. h. sie werden nicht mehr verändert und können für die Herstellung von Mobiltelefonen und Netztechnik verwendet werden.
  • 1990: Die Anpassung der Spezifikationen an den Frequenzbereich bei 1.800 MHz (DCS 1800) beginnt.
  • 1991: Die Groupe Spécial Mobile wird umbenannt in Standard Mobile Group (SMG). GSM bleibt erhalten als Bezeichnung für den Standard selbst und steht nun für Global System for Mobile Communications.
  • 1991: Die Spezifikationen für DCS 1800 werden eingefroren.
  • 1991: Die ersten lauffähigen Systeme werden vorgeführt (z. B. auf der Messe Telecom 91).
  • 1992: Die ersten GSM-Mobiltelefone kommen auf den Markt. [1] [2]
  • 1992: Viele europäische GSM 900-Betreiber beginnen mit dem kommerziellen Netzstart. Im Sommer nehmen in Deutschland die Netze D1 (Betreiber: DeTeMobil Deutsche Telekom Mobilfunk) und D2 (Betreiber: Mannesmann Mobilfunk) den Betrieb auf. In der Schweiz wird Natel D auf GSM-Basis lanciert.
  • 2000: Die GSM-Standardisierungsaktivitäten werden nach 3GPP überführt. Die Arbeitsgruppe dort trägt die Bezeichnung TSG GERAN (Technical Specification Group GSM EDGE Radio Access Network).
  • 2007: Erste Vorschläge zur Nutzung von SIP-Nummern mit GSM

Technik

Allgemein

Im Unterschied zum Festnetz gibt es bei einem Mobilfunknetz diverse zusätzliche Anforderungen:

  • Teilnehmerauthentifizierung
  • Kanalzugriffsverfahren
  • Mobilitätsverwaltung (HLR, VLR, Location Update, Handover, Roaming)
  • Die Teilnehmer sind mobil und können somit von einer Funkzelle in eine andere wechseln. Geschieht dies während eines Gesprächs oder einer Datenverbindung, dann muss die Gesprächsverbindung von einer Basisstation zur nächsten übergeben werden (Handover), damit das Mobiltelefon seine Funkverbindung immer zu der bestgeeigneten Basisstation bekommt. In Ausnahmefällen kann das Gespräch auch über eine benachbarte Basisstation geführt werden, um Überlastungen zu vermeiden.
  • Effiziente Ressourcenausnutzung
  • Da auf der Funkschnittstelle eine geringere Datenübertragungsrate als im Festnetz zur Verfügung steht, müssen die Nutzdaten stärker komprimiert werden. Um den Anteil der Datenübertragungsrate, der für Signalisierungsvorgänge verwendet werden muss, klein zu halten, wurden die Signalisierungsnachrichten bitgenau spezifiziert, um sie so kurz wie möglich zu halten.
  • Mobiltelefone verfügen nur über eine begrenzte Akkukapazität, die sparsam genutzt werden sollte. Generell gilt, dass Senden mehr Energie kostet als Empfangen. Deshalb sollte im Standby-Betrieb die Menge der gesendeten Daten und der Statusmeldungen möglichst gering gehalten werden.
  • Nutzung von Fremdnetzen (Roaming)

Standardisierung

Die Standardisierung von GSM wurde bei CEPT begonnen, von ETSI (Europäisches Institut für Telekommunikationsnormen) weitergeführt und später an 3GPP (3rd Generation Partnership Project) übergeben. Dort wird GSM unter dem Begriff GERAN (GSM EDGE Radio Access Network) weiter standardisiert. 3GPP ist somit für UMTS und GERAN verantwortlich.

Reichweite

Die mit GSM erzielbaren Reichweiten schwanken stark, je nach Geländeprofil und Bebauung. Im Freien sind bei Sichtkontakt teilweise bis zu 35 km erreichbar. Bei größeren Entfernungen verhindert die Laufzeit der Funksignale eine Kommunikation zwischen Basis- und Mobilstation. Es ist allerdings mit Hilfe spezieller Tricks möglich, die Zellengröße zu vergrößern, teilweise auf Kosten der Kapazität. Anwendung findet dies in Küstenregionen. In Städten beträgt die Reichweite aufgrund von Dämpfungen durch Gebäude und durch die niedrigere Antennenhöhe oft nur wenige hundert Meter, dort stehen die Basisstationen allerdings aus Kapazitätsgründen auch dichter beieinander.

Grundsätzlich gilt jedoch, dass mit GSM 900 aufgrund der geringeren Funkfelddämpfung und der größeren Ausgangsleistung der Endgeräte größere Reichweiten erzielbar sind als mit DCS 1800.

Entsprechend der Reichweite wird die Zellengröße festgelegt. Dabei wird auch die prognostizierte Nutzung berücksichtigt, um Überlastungen zu vermeiden.

Verwendete Frequenzen

GSM arbeitet mit unterschiedlichen Frequenzen für den Uplink (vom Mobiltelefon zum Netz) und den Downlink (vom Netz zum Mobiltelefon). Die folgenden Frequenzbänder werden verwendet[3]

Bandbezeichnung Bereich Uplink (MHz) Downlink (MHz) ARFCN Kontinent Anmerkungen
T-GSM 380 GSM 400 380,2–389,8 390,2–399,8 dynamisch
T-GSM 410 GSM 400 410,2–419,8 420,2–429,8 dynamisch
GSM 450 GSM 400 450,4–457,6 460,4–467,6 259–293 das Frequenzband wird für GSM bisher nur von Celtel in Tansania eingesetzt[4]
GSM 480 GSM 400 478,8 – 486,0 488,8 – 496,0 306 – 340 das Frequenzband wird für GSM bisher nur von Celtel in Tansania eingesetzt
GSM 710 GSM 700 698,0–716,0 728,0–746,0 dynamisch
GSM 750 GSM 700 747,0–762,0 777,0–792,0 438–511 das Frequenzband wird für GSM bisher nicht eingesetzt
T-GSM 810 806,0–821,0 851,0–866,0 dynamisch
GSM 850 GSM 850 824,0–849,0 869,0–894,0 128–251 Amerika
P-GSM GSM 900 890,0–915,0 935,0–960,0 1–124 Afrika, Amerika, Asien, Australien, Europa
E-GSM GSM 900 880,0–915,0 925,0–960,0 0, 1–124, 975–1023 Europa
R-GSM GSM 900 876,0–915,0 921,0–960,0 0, 1–124, 955–1023 Asien, Europa
T-GSM 900 GSM 900 870,4–876,0 915,4–921,0 dynamisch
DCS 1800 GSM 1800 1710,0–1785,0 1805,0–1880,0 512–885 Afrika, Amerika, Asien, Australien, Europa
PCS 1900 GSM 1900 1850,0–1910,0 1930,0–1990,0 512–810 Amerika

Insbesondere auf dem amerikanischen Kontinent sind nicht alle Bänder in allen Ländern verfügbar (zum Beispiel in Brasilien nur DCS 1800, in den USA und Kanada nur GSM 850 und PCS 1900).

Situation in Deutschland

In Deutschland fand GSM-Mobilfunk bis zum Jahr 2005 nur im P-GSM- und DCS-1800-Bereich statt. Ende 2005 öffnete die Bundesnetzagentur den gesamten E-GSM-Frequenzbereich für den GSM-Mobilfunk.

Daraufhin begannen E-Plus und O₂ ab April 2006 zum Teil in den E-GSM-Bereich umzuziehen (E-Plus: 880,2-885,0 MHz / 925,2-930,0 MHz und O₂: 885,2-890,0 MHz / 930,2-935,0 MHz). Diese Bereiche nutzen die beiden Anbieter von nun an zum Ausbau ihrer Netze in dünn besiedelten Regionen. Somit verfügen alle vier deutschen Mobilfunkanbieter über Spektren in beiden Bereichen.

Die alten Zuweisungen im DCS-1800-Bereich mussten sie zum Teil als Ausgleich im Januar 2007 abgeben. Sie wurden bei der Frequenzauktion im Jahr 2010 neu vergeben[5]:

  • 1710,0-1715,0 MHz / 1805,0-1810,0 MHz für 20,7 Mio. € an Telekom (bisher durch die Bundeswehr genutzt)
  • 1715,0-1720,0 MHz / 1810,0-1815,0 MHz für 20,7 Mio. € an Telekom (bisher durch die Bundeswehr genutzt)
  • 1720,0-1725,0 MHz / 1815,0-1820,0 MHz für 19,87 Mio. € an Telekom (bisher durch die Bundeswehr genutzt)
  • 1730,1-1735,1 MHz / 1825,1-1830,1 MHz für 21,55 Mio. € an E-Plus (bis Januar 2007 O₂)
  • 1758,1-1763,1 MHz / 1853,1-1858,1 MHz für 21,54 Mio. € an E-Plus (bis Januar 2007 E-Plus)

Die Kanäle (ARFCN) der einzelnen Bänder sind wie folgt auf die 5 deutschen Betreiber verteilt[6]:

Mitte Dezember 2010 erlaubte die Bundesnetzagentur E-Plus die Nutzung seines GSM900-Spektrums für UMTS, siehe [7].

Nutzer GSM 900 DCS 1800 Kanalanzahl
GSM 900 / DCS 1800
D1 / Telekom 13-49, 81-102, 122-124 587-611 62 / 25
D2 / Vodafone 1-12, 50-80, 103-121 725-751 62 / 27
E1 / E-Plus 975-999 777-863 25 / 87
E2 / O₂ 1000-1023, 0 637-723 25 / 87
Deutsche Bahn 955-974 20 / -

R-GSM, E-GSM (GSM 900)

DCS 1800 (GSM 1800)*

* Vf = Vodafone

Situation in Österreich

In Österreich sind die Frequenzbereiche 880-915 MHz und 925-960 MHz, 1710-1785 MHz und 1805-1880 MHz für GSM reserviert, die ARFCNs sind wie folgt vergeben[8]:

Nutzer GSM 900 DCS 1800 Kanalanzahl
GSM 900 / DCS 1800
Mobilkom Austria 992-1023, 0-13, 41-79 523-573, 619-630, 668-673, 738-743 85 / 75
Orange Austria 975-990, 121-124 632-659, 752-868 20 / 145
T-Mobile Austria 15-39, 81-119 512-521, 576-617, 661-666, 675-680, 682-699, 701-712, 714-736, 745-750 64 / 123

R-GSM, E-GSM (GSM 900)

DCS 1800 (GSM 1800)

Situation in der Schweiz

Mit Erlass vom Mai 2009 wurde in der Schweiz die Kanalverteilung neu festgelegt. Ab April 2010 ist im GSM-900-Band auch UMTS zugelassen. Die Kanäle (ARFCN) der einzelnen Bänder sind wie folgt auf die fünf Schweizer Betreiber verteilt:[9][10]

Nutzer GSM 900 DCS 1800 Kanalanzahl
GSM 900 / DCS 1800
In&Phone 841-869 0 / 29
Orange 975-1007 512-632, 764-779 33 / 137
Sunrise 1008-1023, 63-124 721-762, 781-795, 871-881 78 / 68
Swisscom 1-61 634-719 61 / 86
SBB 955-974 20

R-GSM, E-GSM (GSM 900)

DCS 1800 (GSM 1800)

Physikalische Übertragung auf der Luftschnittstelle

GSM-Rahmenstruktur

Die digitalen Daten werden mit einer Mischung aus Frequenz- und Zeitmultiplexing übertragen. Das GSM-Frequenzband wird in mehrere Kanäle unterteilt, die einen Abstand von 200 kHz haben. Sende- und Empfangsrichtung sind getrennt. Bei GSM 900 sind im Bereich von 890–915 MHz 124 Kanäle für die Aufwärtsrichtung (Uplink) zur Basisstation und im Bereich von 935–960 MHz 124 Kanäle für die Abwärtsrichtung (Downlink) vorgesehen. Jede Trägerfrequenz transportiert zeitversetzt acht Nutzkanäle. Die TDMA-Rahmendauer beträgt 4,615 ms, jeder Rahmen ist geteilt in acht Zeitschlitze (englisch Timeslots). In jedem Zeitschlitz wird ein zu je 15/26 ms (ca. 0,577 ms) langer Burst gesendet (insges. existieren 5 verschiedene Bursttypen, in denen 156,25 Bits übertragen werden).

Das Modulationsverfahren ist Gaussian Minimum Shift Keying (GMSK, dt.: Gauß'sche Minimalphasenlagenmodulation), eine digitale Phasenmodulation bei der die Amplitude konstant bleibt. Mit EDGE wurde dann 8-PSK eingeführt. Während bei GMSK pro Symbol nur 1 bit übertragen wird, sind dies bei 8-PSK 3 bit, jedoch wird ein höheres Signal-Rauschleistungsverhältnis bei der Funkverbindung benötigt.

Da bei einer Entfernung von mehreren Kilometern das Funksignal durch die Ausbreitungsgeschwindigkeit (die sogenannte Gruppengeschwindigkeit) soweit verzögert werden kann, dass der Burst des Mobiltelefons nicht mehr innerhalb des vorgegebenen Zeitschlitzes bei der Basisstation ankommt, ermittelt diese die Signallaufzeit und fordert das Mobiltelefon auf, den Burst etwas früher auszusenden. Dazu teilt sie dem mobilen Gerät den Parameter Timing Advance (TA) mit, der den Sendevorlauf in 3,7 μs-Schritten vorgibt. Dies entspricht jeweils der Zeitdauer eines Bit, wobei die Bitrate 270,833 kbits/s beträgt (siehe unten). Der Timing Advance hat einen Wertebereich von 0 bis 63. Die Dauer eines Bits entspricht bei gegebener Gruppengeschwindigkeit einer Wegstrecke von ca. 1,106 km, und da für die Laufzeit Hin- und Rückrichtung zusammen betrachtet werden müssen, entspricht eine Änderung des Timing Advance um eins einer Entfernungsänderung von etwas mehr als 553 m. Somit ergibt sich eine maximale Reichweite von ca. 35,4 km, die jedoch mit technischen Tricks erweitert werden kann.

Nach dem Empfangsburst schaltet das Mobiltelefon auf die um 45 MHz versetzte Sendefrequenz, und sendet dort den Burst des Rückkanals an die Basisstation. Da Downlink und Uplink um drei Zeitschlitze versetzt auftreten (von den acht), genügt eine Antenne für beide Richtungen. Zur Erhöhung der Störfestigkeit kann auch das Frequenzpaar periodisch gewechselt werden (frequency hopping), so entsteht eine Frequenzsprungrate von 217 Sprüngen pro Sekunde.

Bei einer Bruttodatenübertragungsrate von ca. 270,833 kbit/s pro Kanal (156,25 Bits in jedem Burst zu 15/26 ms) bleiben je Kanalschlitz noch 33,9 kbit/s brutto übrig. Von dieser Datenrate sind 9,2 kbit/s für die Synchronisation des Rahmenaufbaus reserviert, so dass 24,7 kbit/s netto für den Nutzkanal übrig bleiben. Durch die Übertragung per Funk liegen in diesem Bitstrom noch viele Bitfehler vor.

Die Datenrate pro Zeitschlitz von 24,7 kbit/s wird in 22,8 kbit/s für die kodierten und verschlüsselten Nutzdaten des Verkehrskanals (Traffic Channel) und 1,9 kbit/s für die teilnehmerspezifischen Steuerkanäle (Control Channel) aufgeteilt. Die Kanalkodierung beinhaltet eine Reihe von Fehlerschutzmechanismen, so dass für die eigentlichen Nutzdaten noch 13 kbit/s übrig bleiben (im Fall von Sprachdaten). Eine später eingeführte alternative Kanalkodierung erlaubt die Verringerung des Fehlerschutzes zugunsten der Anwendungsdaten, da bei Datenübertragungsprotokollen im Gegensatz zur Sprachübertragung bei Bitfehlern eine Neuanforderung des Datenblocks möglich ist.

Netzarchitektur

Aufbau eines GSM-Netzes

Hardware

GSM-Netze sind in vier Teilsysteme unterteilt (siehe Bild von links nach rechts):

Mobiltelefon bzw. Mobile Station (MS) (links im Bild, unbezeichnet)
Die MS besteht aus einer Antenne, an die eine Sende- und Empfangseinheit angeschlossen ist, Stromversorgung, Lautsprecher und Mikrofon (oder externe Anschlüsse) und einer Möglichkeit, einen anderen Teilnehmer auszuwählen (typischerweise Tastatur oder Spracheingabe). Üblicherweise enthält die Mobile Station zusätzlich ein Display, um die Telefonnummer des Anrufers sowie Kurzmitteilungen (SMS) anzuzeigen. Ein weiterer wesentlicher Bestandteil der MS ist die SIM-Karte[11].
Mobilfunksendesystem bzw. Base Station Subsystem (BSS)
Das BSS besteht aus mindestens einer Basisstation (BTS, Base Transceiver Station), üblicherweise jedoch mehreren (meist einige 10 bis einige 100). Jede Basisstation bedient über die an sie angeschlossenen Antennen eine oder mehrere (häufig drei) Funkzellen. Die Basisstationen sind mit einer zentralen Steuerungseinheit (BSC, Base Station Controller) verbunden, die die Funkverbindungen überwacht und ggf. Zellwechsel (Handover) einleitet. An jedem BSC ist eine Umwandlungseinheit (TRAU, Transcoder and Rate Adaptation Unit) angeschlossen. Diese wird benötigt da bei Telefongesprächen innerhalb des Mobilfunknetzes ein komprimierender Audiocodec verwendet wird. Die TRAU konvertiert zwischen GSM-komprimierten Sprachkanälen und unkomprimierten ISDN-Audiokanälen mit 64kbit/s.
Vermittlungsteilsystem bzw. Network Switching Subsystem (NSS) oder Core Network Subsystem (CSS)
Das NSS besteht aus dem MSC (Mobile-services Switching Centre)[12], das die eigentliche Vermittlungsstelle und die Schnittstelle zwischen Funknetz und Telefonnetz darstellt. Ebenfalls zum NSS gehört das VLR (Visitor Location Register), das Informationen über alle mobilen Teilnehmer speichert, die sich innerhalb des Funknetzes aufhalten. Das HLR (Home Location Register) speichert dagegen Informationen über alle Teilnehmer, die Kunden des Funknetzeigentümers sind. Für die Authentifizierung ist das AUC (Authentication Center) zuständig, das (optionale) EIR (Equipment Identity Register) speichert Informationen über die Seriennummern der verwendeten Mobile Stations. Für den paketvermittelten Teil GPRS stehen der SGSN (Serving GPRS Support Node) und GGSN (Gateway GPRS Support Node) zur Verfügung.
Operation and Maintenance Center (OMC) bzw Network Management Center (NMC) (nicht eingezeichnet)
Das OMC überwacht das Mobilfunknetz und kontrolliert die MSC, BSC und BTS.

Die blauen Buchstaben im Bild bezeichnen die Datenübertragungswege zwischen den Komponenten.

Adressierung

In einem GSM-Netz werden folgende Nummern zur Adressierung der Teilnehmer verwendet: Die MSISDN (Mobile Subscriber ISDN Number) ist die eigentliche Telefonnummer, unter der ein Teilnehmer weltweit zu erreichen ist. Die IMSI (International Mobile Subscriber Identity) ist dementsprechend die interne Teilnehmerkennung, die auf der SIM gespeichert wird und zur Identifizierung eines Teilnehmers innerhalb eines Funknetzes verwendet wird. Aus Datenschutzgründen wird die IMSI nur bei der initialen Authentifizierung der mobilen Station über das Funknetz gesendet, in weiteren Authentifizierungen wird stattdessen eine temporär gültige TMSI (Temporary Mobile Subscriber Identity) verwendet. Für das Roaming, also das Routing des Telefonats innerhalb des Mobilfunknetzes, wird die MSRN (Mobile Station Roaming Number) verwendet.

Einige wichtige Funktionen innerhalb von Mobilfunknetzen

Handover

Hauptartikel: Handover

Inter-Cell-Handover

Eine der wichtigsten Grundfunktionen in zellularen Mobilfunknetzen ist der vom Netz angestoßene Zellwechsel während eines laufenden Gesprächs. Dieser kann aus verschiedenen Gründen notwendig werden. Ausschlaggebend ist u. a. die Qualität der Funkverbindung, aber auch die Verkehrslast der Zelle. Es kann zum Beispiel ein Gespräch an eine weiter entfernte Zelle übergeben werden, um eine Überlastung zu vermeiden.

Intra-Cell-Handover

Hier wird zum Beispiel aufgrund der Kanalqualität der MS ein neuer Kanal innerhalb einer Zelle zugewiesen.

Mobility Management

Mehrere Prozeduren im GSM-Netz behandeln die Bewegung (Mobility) der Teilnehmer im Netz. Damit ein mobiler Teilnehmer, der sich irgendwo im Netzgebiet befindet, angerufen oder ihm eine Kurznachricht zugestellt werden kann, muss ständig die Voraussetzung dafür bestehen, dass der Teilnehmer eine Suchanfrage (genannt Paging) empfangen kann. Hierzu muss sein aktueller Aufenthaltsort in gewisser Granularität ständig nachgeführt werden.

Zur Verringerung des Aufwands im Kernnetz und zur Verlängerung der Akku-Laufzeit wird zentral nur die Location Area erfasst, in der sich ein eingebuchtes Mobiltelefon befindet. Wo es sich innerhalb dieses Gebietes befindet, ist nicht bekannt. Um Energie und Übertragungskapazität zu sparen, meldet sich das Mobiltelefon im Standby-Betrieb (idle-mode) in vom Netz vorgegebenen Abständen (zwischen 6 Minuten und 25,5 Stunden)[13] oder beim Wechsel der Location Area beim Netz. Sobald das Netz mit dem Mobiltelefon eine Verbindung aufbauen möchte wird dieses über alle Basisstationen der Location Area gerufen und bei Meldung die Verbindung über die Basisstation, an der das Endgerät sich meldet, aufgebaut.

Dem Mobiltelefon dagegen ist genau bekannt, in welcher Funkzelle es sich befindet. Im Standby-Betrieb scannt es die Nachbarzellen, deren Trägerfrequenzen es von der Basisstation auf speziellen Informationskanälen mitgeteilt bekommt. Wird das Signal einer der Nachbarzellen besser als das der aktuellen Zelle, dann wechselt das Mobiltelefon dorthin. Bemerkt es dabei eine Änderung der Location Area, dann muss es dem Netz seinen neuen Aufenthaltsort mitteilen.

Für das Mobilitätsmanagement sind das VLR (Visitor Location Register) und das HLR (Home Location Register) von sehr großer Bedeutung. Die beiden sind eigentlich als Datenbanken zu verstehen. Jede MS ist genau einmal in einem HLR registriert. Dort sind alle Teilnehmerdaten gespeichert. Im HLR ist stets die Location Area, in der sich eine MS zuletzt gemeldet hat, eingetragen. Im VLR sind jeweils alle sich im Einzugsgebiet eines MSC befindlichen MS eingetragen.

Roaming

Hauptartikel: Roaming

Da viele Mobilfunkbetreiber aus verschiedenen Ländern Roamingabkommen getroffen haben, ist es möglich, das Mobiltelefon auch in anderen Ländern zu nutzen und weiterhin unter der eigenen Nummer erreichbar zu sein und Gespräche zu führen.

Sicherheitsfunktionen

Authentifizierung

Jedem Teilnehmer wird bei der Aufnahme in das Netz eines Mobilfunkbetreibers ein 128 Bit langer Subscriber Authentication Key Ki zugeteilt. Der Schlüssel wird auf Teilnehmerseite in der SIM-Karte, netzseitig entweder im HLR oder im AuC gespeichert[14]. Zur Authentifizierung wird der MS vom Netz eine 128 Bit lange Zufallszahl RAND geschickt. Aus dieser Zufallszahl und Ki wird mit dem A3-Algorithmus der Authentifizierungsschlüssel SRES' (Signed Response, 32 Bit) berechnet. Diese Berechnung findet in der SIM-Karte statt. Der Authentifizierungsschlüssel SRES wird vom Netz im AuC und von der MS getrennt berechnet und das Ergebnis vom VLR verglichen. Stimmen SRES und SRES' überein, ist die MS authentifiziert.

Der A3-Algorithmus ist elementarer Bestandteil der Sicherheit im GSM-Netz. Er kann von jedem Netzbetreiber selbst ausgewählt werden, Details der jeweiligen Implementierung werden geheim gehalten.

Nutzdatenverschlüsselung

Zur Verschlüsselung wird aus der zur Authentifizierung benötigten Zufallszahl RAND und dem Benutzerschlüssel Ki mit dem Algorithmus A8 ein 64 Bit langer Codeschlüssel (engl.: Ciphering Key) Kc bestimmt. Dieser Codeschlüssel wird vom Algorithmus A5 zur symmetrischen Verschlüsselung der übertragenen Daten verwendet[14].

Schon angesichts der geringen Schlüssellänge kann davon ausgegangen werden, dass die Verschlüsselung keine nennenswerte Sicherheit gegen ernsthafte Angriffe bietet. Außerdem wurde bereits durch mehrere Angriffe auf den verwendeten Algorithmus A5/1 gezeigt, dass dieser prinzipiell unsicher ist.[15][16] Allerdings verhindert die Verschlüsselung ein einfaches Abhören, wie es beim analogen Polizeifunk möglich ist.

Die Verschlüsselung ist in Deutschland normalerweise eingeschaltet. In Ländern wie z.B. Indien darf das Handynetz nicht verschlüsselt werden. Prinzipiell sieht der GSM-Standard vor, dass Mobiltelefone bei unverschlüsselten Verbindungen eine Warnung anzeigen. Beim Einsatz eines IMSI-Catchers wird die Verschlüsselung normalerweise ausgeschaltet.[17][18]

Anonymisierung

Um eine gewisse Anonymität zu gewährleisten, wird die eindeutige Teilnehmerkennung IMSI, über die ein Teilnehmer weltweit eindeutig zu identifizieren ist, auf der Luftschnittstelle verborgen. Stattdessen wird vom VLR eine temporäre TMSI generiert, die bei jedem Location Update neu vergeben wird und nur verschlüsselt übertragen wird. Siehe dazu IMSI-Catcher.

Benutzerauthentisierung

Der Benutzer muss sich gegenüber der SIM-Karte als berechtigter Nutzer authentisieren. Dies geschieht mittels einer PIN. Es ist auf der SIM-Karte festgelegt, ob die PIN-Abfrage deaktiviert werden kann. Wurde die PIN dreimal in Folge falsch eingegeben, wird die SIM-Karte automatisch gesperrt. Um sie wieder zu entsperren ist der PUK (Personal Unblocking Key) erforderlich. Der PUK kann zehnmal in Folge falsch eingegeben werden bevor die SIM-Karte endgültig gesperrt wird.

Dienste für den Benutzer

Festnetzseitig basiert der GSM-Standard auf dem ISDN-Standard und stellt deshalb ähnliche vermittlungstechnische Leistungsmerkmale bereit. Mit der Möglichkeit, Kurznachrichten (SMS, kurz für Short Message Service) zu senden und zu empfangen, wurde ein neuer Dienst geschaffen, der begeistert angenommen worden ist und mittlerweile eine wichtige Einnahmequelle für die Netzbetreiber geworden ist.

Sprachübertragung

Für die Sprachübertragung bei GSM wurden im Laufe der Jahre mehrere Codecs standardisiert. Die üblichen Sprachcodecs, welche typischerweise mit einer Datenrate von weniger als 20 kbit/s auskommen, führen eine der menschlichen Sprache angepasste Merkmalsextraktion durch, wodurch sie nur für die Übertragung von Sprache brauchbar sind. Musik oder andere Geräusche können sie daher nur mit geringerer Qualität übertragen. Im Folgenden werden die im GSM-Netz verwendeten Sprachcodecs kurz zusammengefasst:

Full Rate Codec (FR)

Der erste GSM-Sprachcodec war der Full-Rate-Codec (FR). Für ihn steht nur eine Netto-Datenrate von 13 kbit/s zur Verfügung (im Unterschied zu G.711 64 kbit/s bei ISDN). Die Audiosignale müssen deshalb stark komprimiert werden, aber trotzdem eine akzeptable Sprachqualität erreichen. Beim FR-Codec wird eine Mischung aus Langzeit- und Kurzzeit-Prädiktion verwendet, die eine effektive Komprimierung ermöglicht (RPE/LTP-LPC Sprachkompression: Linear Predictive Coding, Long Term Prediction, Regular Pulse Excitation[19]).

Full Rate Codec

Technisch werden jeweils 20 ms Sprache gesampelt und gepuffert, anschließend dem Sprachcodec unterworfen (13 kbit/s). Zur Vorwärtsfehlerkorrektur (Forward Error Correction, FEC) werden die 260 Bits eines solchen Blocks in drei Klassen eingeteilt, dementsprechend, wie stark sich ein Bitfehler auf das Sprachsignal auswirken würde. 50 Bits des Blocks werden in Klasse Ia eingeteilt. Sie sind am stärksten zu schützen und erhalten eine CRC-Prüfsumme von 3 Bits, für Fehlererkennung und Fehlerverdeckung (error concealment). Zusammen mit 132 Bits der Klasse Ib, die etwas weniger zu schützen sind, werden sie einem Faltungs-Code unterworfen, der aus den 185 Eingangsbits 378 Ausgangsbits generiert. Die restlichen 78 Bits werden ungeschützt übertragen. So werden aus 260 Bits Nutzdaten 456 Bits fehlergeschützte Daten, wodurch die erforderliche Bitrate auf 22,8 kbit/s steigt.

Interleaving

Die 456 Bits werden durch Interleaving auf acht Halbbursts zu je 57 Bits aufgeteilt. Nach dem Deinterleaving im Empfänger wirken sich kurzzeitige Störungen (zum Beispiel ein Burst lang) durch die Fehlerspreizung nur noch gering aus. Durch die Kombination der unterschiedlichen Fehlerschutzverfahren im GSM, wird, obwohl der Funkkanal äußerst fehleranfällig ist, oft eine gute Sprachqualität erreicht.

Half Rate Codec (HR)

Half Rate Codec

Mit der Einführung des Half-Rate-Codecs wurde es möglich, auf einem Zeitschlitz der Luftschnittstelle nicht nur ein, sondern zwei Gespräche gleichzeitig abzuwickeln. Wie der Name sagt, steht für HR nur die halbe Datenrate zur Verfügung wie für den FR-Codec. Um trotzdem eine brauchbare Sprachqualität zu erreichen, wird anstelle der im FR-Codec verwendeten skalaren Quantisierung eine Vektorquantisierung verwendet. Dadurch ist für die Kodierung ungefähr die drei- bis vierfache Rechenleistung erforderlich wie beim FR-Codec. Weil die Sprachqualität trotzdem eher mäßig ist, wird HR von den Mobilfunknetzbetreibern nur dann eingesetzt, wenn eine Funkzelle überlastet ist.

Enhanced Full Rate Codec (EFR)

EFR arbeitet mit einer ähnlichen Datenrate wie der Full Rate Codec, nämlich 12,2 kbit/s. Durch einen leistungsfähigeren Algorithmus (CELP) wurde, gegenüber dem Full-Rate-Codec, eine bessere Sprachqualität erreicht, welche bei einem guten Funkkanal annähernd dem Niveau von ISDN-Telefongesprächen (G.711a) entspricht.

Adaptive Multirate Codec (AMR)

Bei AMR handelt es sich um einen parametrierbaren Codec mit unterschiedlichen Datenraten zwischen 4,75 und 12,2 kbit/s. In der 12,2-kbit/s-Einstellung entspricht er vom Algorithmus wie auch in der Audioqualität her weitgehend dem GSM-EFR-Codec. Je geringer die Datenrate der Sprachdaten ist, umso mehr Bits stehen für die Kanalkodierung und damit zur Fehlerkorrektur zur Verfügung. Somit wird der 4,75-kbit/s-Codec als der robusteste bezeichnet, weil trotz hoher Bitfehlerhäufigkeit bei der Funkübertragung noch ein verständliches Gespräch möglich ist. Während eines Gespräches misst das Mobilfunknetz die Bitfehlerhäufigkeit und wählt den dafür geeignetsten Codec aus einer Liste, dem Active Codec Set (ACS) aus. Die verwendete Koderate wird somit fortlaufend an die Kanalqualität adaptiert.

Adaptive Multirate Codec / wide Band (AMR-WB)

Bei diesem Codec handelt es sich um eine Erweiterung und Optimierung des schon verfügbaren AMR-Codecsets. Wie das „WB“ (wide band) schon vermuten lässt, so wird der übertragbare Frequenzbereich von derzeit ca. 3,4 kHz auf etwa 6,4 kHz beziehungsweise 7 kHz angehoben ohne mehr Funkressourcen zu belegen. Die Entwicklung dieses Codecs ist seit einiger Zeit abgeschlossen und er wurde von der ITU (G.722.2) und 3GPP (TS 26.171) standardisiert. Der Codec soll, auch durch die größere Bandbreite, Sprach- und Umgebungsgeräusche besser gemeinsam übertragen können. Mit AMR-WB soll es dann auch in lauter Umgebung eine bessere Sprachqualität möglich werden. Ericsson hat im T-Mobile-UMTS-Netz in Deutschland im Sommer 2006 mit ausgewählten Kunden in den Städten Köln und Hamburg einen AMR-WB-Betriebstest durchgeführt. Seit Ende 2008 sind im Netz von T-Mobile alle Ericsson-BSC für AMR-WB vorbereitet; sie sollen im Laufe des Jahres 2011 für Endkunden freigegeben werden.[20]

Datenübertragung

Wird ein GSM-Kanal für Datenübertragung genutzt, erhält man nach den Dekodierschritten eine nutzbare Datenrate von 9,6 kbit/s. Diese Übertragungsart wird Circuit Switched Data (CSD) genannt. Eine fortschrittliche Kanalkodierung ermöglicht auch 14,4 kbit/s, bewirkt bei schlechten Funkverhältnissen aber viele Blockfehler, so dass die „Downloadrate“ tatsächlich niedriger ausfallen kann als mit erhöhter Sicherung auf dem Funkweg. Deshalb wird in Abhängigkeit von der Bitfehlerhäufigkeit zwischen 9,6 und 14,4 kbit/s netzgesteuert umgeschaltet (=Automatic Link Adaptation, ALA).

Beides ist jedoch für viele Internet- und Multimediaanwendungen zu wenig, so dass Erweiterungen unter dem Namen HSCSD und GPRS geschaffen wurden, die eine höhere Datenrate ermöglichen, indem mehr Bursts pro Zeiteinheit für die Übertragung genutzt werden können. HSCSD nutzt eine feste Zuordnung mehrerer Kanalschlitze, GPRS nutzt Funkschlitze dynamisch für die aufgeschalteten logischen Verbindungen (besser für den Internetzugang). Eine Weiterentwicklung von GPRS ist E-GPRS. Dies ist die Nutzung von EDGE für Paketdatenübertragung.

Ortung

Hauptartikel: GSM-Ortung

Die Position eines Mobiltelefons ist für den Mobilfunkbetreiber durch die permanente Anmeldung am Netz in gewissen Genauigkeitsgrenzen bekannt. Im Standby-Betrieb ist sie zumindest durch die Zuordnung zur aktuell verwendeten Location Area gegeben. Diese Information wird bei Bewegung der Mobilstation regelmäßig aktualisiert.

GSM-Ortung stellt je nach Anwendungsfall eine Alternative zum GPS dar und wird für verschiedene Dienste genutzt, unter anderem für Location Based Services, Routenplaner, Flottenmanagement für Transportunternehmen oder eine Hilfe zum Wiederauffinden eines Mobiltelefons.

Die Verwendung für Rettungsdienste ermöglicht das schnelle Auffinden von Unfallopfern. Ebenso wird GSM-Ortung in der Strafverfolgung als Hilfsmittel der Polizei eingesetzt.

Erweiterungen und Weiterentwicklungen von GSM

GSM wurde ursprünglich hauptsächlich für Telefongespräche, Faxe und Datensendungen mit konstanter Datenrate konzipiert. Burstartige Datensendungen mit stark schwankender Datenrate, wie es beim Internet üblich ist, wurden nicht eingeplant.

Mit dem Erfolg des Internets begann daher die sogenannte „Evolution von GSM“, bei der das GSM-Netz komplett abwärtskompatibel mit Möglichkeiten zur paketorientierten Datenübertragung erweitert wurde. Es sollten außerdem nur minimale Kosten durch den Austausch von vielfach verwendeten Komponenten entstehen.

CSD

Geschwindigkeiten bis zu 14,4 kBit/s werden mit Circuit Switched Data erreicht.

HSCSD

Durch die Kopplung von mehreren Kanälen erreicht HSCSD insgesamt eine höhere Datenrate, maximal 115,2 kbit/s. Um HSCSD nutzen zu können, braucht man ein kompatibles Mobiltelefon, auf Seiten des Netzbetreibers sind Hardware- und Softwareänderungen bei Komponenten innerhalb der Basisstationen und des Kernnetzes erforderlich. In Deutschland unterstützen nur Vodafone und E-Plus HSCSD.

GPRS

GPRS erlaubte erstmalig eine paketvermittelte Datenübertragung. Der tatsächliche Datendurchsatz hängt unter anderem von der Netzlast ab und liegt bei maximal 171,2 kbit/s. Bei geringer Last kann ein Nutzer mehrere Zeitschlitze parallel verwenden, während bei hoher Netzlast jeder GPRS-Zeitschlitz auch von mehreren Benutzern verwendet werden kann. GPRS erfordert beim Netzbetreiber allerdings innerhalb des Kernnetzes zusätzliche Komponenten (den GPRS Packet Core).

EDGE

Mit EDGE wurde durch eine neue Modulation (8PSK) eine Erhöhung der Datenrate ermöglicht. Sie beträgt maximal 384 kbit/s. Mit EDGE werden GPRS zu E-GPRS (Enhanced GPRS) und HSCSD zu ECSD (Enhanced Circuit Switched Data) erweitert.

Streaming

Streaming services erfordern eine minimale garantierte Datenrate. Dies ist in GPRS ursprünglich nicht vorgesehen. Inzwischen (d. h. ab 3GPP release 99) wurden durch Einführung entsprechender Quality of service-Parameter und einige andere Eigenschaften die Voraussetzungen dafür geschaffen, echtes Streaming über GPRS zu ermöglichen.

Generic Access

Seit Mitte 2004 wird in den Standardisierungsgremien an einer Methode gearbeitet, die es Mobilgeräten erlauben soll, GSM-Dienste statt über die GSM-Luftschnittstelle auch über jede Art von anderen (IP-)Übertragungssystemen zu nutzen. Hierzu sollen die Sendestationen von WLAN, Bluetooth etc. über sogenannte Generic Access Controller an das GSM core network angeschlossen werden. Die GSM-Nutzdaten sowie die Signalisierungsdaten werden dann durch das IP-Netz hindurchgetunnelt.

Cell Broadcast

Cell Broadcast oder Cell Broadcasting (kurz CB) ist ein Mobilfunkdienst zum netzseitigen Versenden von Kurzmitteilungen an alle in einer bestimmten Basisstation eingebuchten MS.

BOS-GSM

BOS-GSM (je nach Anbieter auch BOS@GSM, GSM-BOS) ist eine Technik zur digitalen Funkkommunikation von Anwendern mit besonderen Sicherheitsanforderungen wie Behörden und Organisationen mit Sicherheitsaufgaben (BOS: Polizei, Feuerwehr, Rettungsdienste).

Triviales

Im französischen Sprachgebrauch wird vor allem in Belgien häufig die Abkürzung „GSM“ für das deutsche Wort „Mobiltelefon“ benutzt. Auch in der bulgarischen Sprache, die seit über 200 Jahren viele Wörter aus dem Französischen entlehnt, wird „GSM“ synonym für „Mobiltelefon“ gebraucht.

Literatur

  • Siegmund M. Redl, Matthias K. Weber, Malcolm W. Oliphant: An Introduction to GSM, Artech House, March 1995, ISBN 978-0-89006-785-7
  • Siegmund M. Redl, Matthias K. Weber, Malcolm W. Oliphant: GSM and Personal Communications Handbook, Artech House, May 1998, ISBN 978-0-89006-957-8
  • Jon Agar: constant touch, a global history of the mobile phone. Icon Books, Cambridge 2003, ISBN 1-84046-541-7.
  • Jörg Eberspächer: GSM, Global System for Mobile Communication: Vermittlung, Dienste und Protokolle in digitalen Mobilfunknetzen. Teubner, Stuttgart 2001, ISBN 3-519-26192-8
  • Hannes Federrath: Sicherheit mobiler Kommunikation: Schutz in GSM-Netzen, Mobilitätsmanagement und mehrseitige Sicherheit, Vieweg, 1999, ISBN 3-528-05695-9
  • Michel Mouly, Marie-Bernadette Pautet: The GSM System for Mobile Communications. M. Mouly, Palaiseau 1992, ISBN 2-9507190-0-7
  • Martin Sauter: Grundkurs Mobile Kommunikationssysteme. Vieweg, 2008, ISBN 978-3-8348-0397-9
  • Jochen Schiller: Mobilkommunikation. Pearson, München 2003, ISBN 3-8273-7060-4
  • Peter Vary, Rainer Martin: Digital Speech Transmission – Enhancement, Coding and Error Concealment, Wiley 2006, ISBN 0-471-56018-9
  • Bernhard Walke: Mobilfunknetze und ihre Protokolle 1, Stuttgart 2001, ISBN 3-519-26430-7

Siehe auch

Weblinks

Einzelnachweise

  1. http://www.reghardware.co.uk/2007/11/09/ft_nokia_1011/
  2. http://www.focus.de/digital/handy/tid-13727/mobilfunk-geschichte-mit-dem-telefonkoffer-durchs-land_aid_382427.html
  3. 3GPP TS 45.005: Radio Access Network; Radio transmission and reception (Release 9); Kap. 2: Frequency bands and channel arrangement (Englisch) (ZIP/DOC; 938 KB) (1. Oktober 2009). Abgerufen am 25. November 2009.
  4. GSM coverage maps for Tanzania (Englisch) (HTML; 12 KB). Abgerufen am 24. Januar 2010.
  5. Endergebnis der Frequenzversteigerung 2010
  6. GSM-Kanäle in Deutschland
  7. Freigabe des 900-MHz-Spektrums von E-Plus für UMTS
  8. GSM-Spektrum (Österreich)
  9. Erneuerung von GSM-Konzessionen (Deutsch) (HTML; 16KB) (26. Mai 2009). Abgerufen am 31. Januar 2010.
  10. ECO INFORMATION DOCUMENT on THE USE OF MOBILE BANDS in CEPT (Englisch) (PDF; 282 KB) (20. Januar 2010). Abgerufen am 31. Januar 2010.
  11. 3GPP TS 23.002: Network architecture; Kap. 4.3: The Mobile Station (MS). (ZIP/DOC; 2,8 MB).
  12. ETSI TS 100522 V7.1.0: Digital cellular telecommunications system (Phase 2+); Network architecture. (ZIP/DOC; 135 KB).
  13. 3GPP TS 24.008: Mobile radio interface Layer 3 specification; Core network protocols; Kap. 10.5.1.12.2 CS domain specific system information (Englisch) (ZIP/DOC; 3,4 MB) (28. September 2009). Abgerufen am 30. November 2009.
  14. a b GSM TS 03.20: Security-related network functions, Release 9.0.0 (Englisch) (ZIP/DOC; 476KB) (16. Januar 2001). Abgerufen am 25. November 2009.
  15. heise Security: GSM-Hacken leicht gemacht
  16. Heise Security vom 28. Dezember 2010: 27C3: Abhören von GSM-Handys weiter erleichtert
  17. IMSI-Catcher für 1500 Euro im Eigenbau. Heise online, 1. August 2010, archiviert vom Original am 2. August 2010, abgerufen am 2. August 2010.
  18. IMSI-Catcher#Nachweisbarkeit
  19. home.arcor-online.de: GSM-Technik, Zugriff am 6. Mai 2011
  20. Mobilfunknetz der Telekom weitgehend für HD-Telefonie gerüstet. auf: teltarif.de 5. Mai 2011, Abgerufen am 5. Mai 2011


Dies ist ein als lesenswert ausgezeichneter Artikel.
Dieser Artikel wurde in die Liste der lesenswerten Artikel aufgenommen. Vorlage:Lesenswert/Wartung/ohne DatumVorlage:Lesenswert/Wartung/ohne Version

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Global System For Mobile Communications — Cette page concerne la norme GSM, pour l appareil homonyme voir téléphone mobile. Générations et normes de téléphonie mobile 0G PTT MTS IMTS AMTS 0,5G Autotel/PALM ARP 1G NMT AMPS Hicap CDPD Mobitex DataTac TACS …   Wikipédia en Français

  • Global System for Mobile communications — Cette page concerne la norme GSM, pour l appareil homonyme voir téléphone mobile. Générations et normes de téléphonie mobile 0G PTT MTS IMTS AMTS 0,5G Autotel/PALM ARP 1G NMT AMPS Hicap CDPD Mobitex DataTac TACS …   Wikipédia en Français

  • Global system for mobile communications — Cette page concerne la norme GSM, pour l appareil homonyme voir téléphone mobile. Générations et normes de téléphonie mobile 0G PTT MTS IMTS AMTS 0,5G Autotel/PALM ARP 1G NMT AMPS Hicap CDPD Mobitex DataTac TACS …   Wikipédia en Français

  • Global System for Mobile Communications — (Sistema Global para las Comunicaciones Móviles ), formalmente conocida como Group Special Mobile (GSM, Grupo Especial Móvil) es un estándar mundial para teléfonos móviles digitales. El estándar fue creado por la CEPT y posteriormente… …   Enciclopedia Universal

  • Global System for Mobile Communications — Global System for Mobile Communications,   GSM …   Universal-Lexikon

  • Global System for Mobile Communications — Cet article concerne la norme GSM. Pour l appareil électronique homonyme, voir téléphone mobile. Global System for Mobile Communications (GSM) (historiquement « Groupe spécial mobile »[1]) est une norme numérique de deuxième génération… …   Wikipédia en Français

  • global system for mobile communications — pasaulinė mobiliojo ryšio sistema statusas T sritis informatika apibrėžtis Skaitmeninių metodų ir priemonių visuma mobiliems telefono, fakso, elektroninio pašto bei interneto ryšiams užtikrinti. Veikia 900 (tiksliau 872–960), 1800 (1710–1875) MHz …   Enciklopedinis kompiuterijos žodynas

  • Global System for Mobile Communication — Das Global System for Mobile Communications (früher Groupe Spécial Mobile, GSM) ist ein Standard für volldigitale Mobilfunknetze, der hauptsächlich für Telefonie, aber auch für leitungsvermittelte und paketvermittelte Datenübertragung sowie… …   Deutsch Wikipedia

  • Global System for Mobile Communications — digital cellular communication system used in many countries (based on a variation of TDMA technology), GSM …   English contemporary dictionary

  • global system for mobile telecommunications — UK US noun [S] COMMUNICATIONS ► GSM(Cf. ↑GSM) …   Financial and business terms

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”