Hessematrix

Hessematrix

Die Hesse-Matrix (nach Otto Hesse) fasst die partiellen zweiten Ableitungen einer mehrdimensionalen Funktion f(x1,..xn), die in die reellen oder komplexen Zahlen abbildet, zusammen:


\operatorname{H}(f)=\operatorname{H}_f=
\left(\frac{\partial^2f}{\partial x_i\partial x_j}\right)=
\begin{pmatrix}
\frac{\partial^2 f}{\partial x_1\partial x_1}&\frac{\partial^2 f}{\partial x_1\partial x_2}&\cdots&\frac{\partial^2  f}{\partial x_1\partial x_n}\\[,5em]
\frac{\partial^2 f}{\partial x_2\partial x_1}&\frac{\partial^2 f}{\partial x_2\partial x_2}&\cdots&\frac{\partial^2  f}{\partial x_2\partial x_n}\\
\vdots&\vdots&\ddots&\vdots\\
\frac{\partial^2 f}{\partial x_n\partial x_1}&\frac{\partial^2 f}{\partial x_n\partial x_2}&\cdots&\frac{\partial^2  f}{\partial x_n\partial x_n}
\end{pmatrix}

Die Hesse-Matrix entspricht dem Transponierten der Ableitung des Gradienten, ist aber bei stetigen zweiten Ableitungen wegen der Vertauschbarkeit der Differentiationsreihenfolge (Satz von Schwarz) symmetrisch, so dass das Transponieren der Matrix keine Änderung bewirkt.

Mit Hilfe der Hesse-Matrix H lässt sich der Charakter der kritischen Punkte einer Abbildung in \mathbb R^n bestimmen. Dazu bestimmt man für die zuvor ermittelten kritischen Punkte die Definitheit der Hesse-Matrix H. Ist H an einer Stelle positiv definit, so befindet sich dort ein lokales Minimum der Funktion. Ist H dort negativ definit, so handelt es sich um ein lokales Maximum. Ist H indefinit, dann handelt es sich um einen Sattelpunkt der Funktion, d. h., es liegt weder ein Minimum noch ein Maximum vor. Falls H an der untersuchten Stelle nur semidefinit ist, so versagt dieses Kriterium und der Charakter des kritischen Punktes muss auf anderem Wege ermittelt werden. Welcher dieser Fälle vorliegt, kann – wie unter Definitheit beschrieben – z. B. mit Hilfe der Vorzeichen der Eigenwerte von H oder ihrer Hauptminoren entschieden werden.

Anwendungen

Die Hesse-Matrix taucht bei der Approximation einer mehrdimensionalen Funktion in der Taylor-Entwicklung auf. Sie ist unter anderem in Zusammenhang mit der Optimierung von Systemen von Bedeutung, die durch mehrere Parameter beschrieben werden, wie sie beispielsweise in den Wirtschaftswissenschaften, in der Physik, theoretischen Chemie oder in den Ingenieurwissenschaften häufig auftreten.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Поможем сделать НИР

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Morse-Theorie — Die Morsetheorie aus dem Bereich der Differentialtopologie gibt einen sehr direkten Zugang zur Analyse der Topologie einer Mannigfaltigkeit über das Studium differenzierbarer Funktionen auf dieser Mannigfaltigkeit. Die wesentlichen Einsichten… …   Deutsch Wikipedia

  • Morsetheorie — Die Morsetheorie aus dem Bereich der Differentialtopologie gibt einen sehr direkten Zugang zur Analyse der Topologie einer Mannigfaltigkeit über das Studium differenzierbarer Funktionen auf dieser Mannigfaltigkeit. Die wesentlichen Einsichten… …   Deutsch Wikipedia

  • Delta-Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Deltaoperator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Hesse-Matrix — Die Hesse Matrix (nach Otto Hesse) ist eine Matrix, die in der mehrdimensionalen reellen Analysis ein Analogon zur zweiten Ableitung einer Funktion ist. Inhaltsverzeichnis 1 Definition 2 Eigenschaften 2.1 Extremwerte …   Deutsch Wikipedia

  • Laplace-Beltrami-Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Laplaceoperator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Laplacescher Operator — Der Laplace Operator Δ ist ein mathematischer Operator (also eine Rechenvorschrift), der zuerst von Pierre Simon Laplace eingeführt wurde. Er spielt in vielen physikalischen Theorien, insbesondere bei der Beschreibung elektrischer und… …   Deutsch Wikipedia

  • Laplace-Operator — Der Laplace Operator Δ ist ein mathematischer Operator, der zuerst von Pierre Simon Laplace eingeführt wurde. Es handelt sich um einen linearen Differentialoperator innerhalb der mehrdimensionalen Analysis. Der Laplace Operator spielt in vielen… …   Deutsch Wikipedia

  • Partielle Ableitung — In der Differentialrechnung ist eine partielle Ableitung die Ableitung einer Funktion mit mehreren Argumenten nach einem dieser Argumente. Inhaltsverzeichnis 1 Definition 2 Zusammenhang Ableitung, partielle Ableitung, Stetigkeit 3 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”