- John Torrence Tate
-
John Torrence Tate (* 13. März 1925 in Minneapolis, Minnesota, Vereinigte Staaten) ist ein US-amerikanischer Mathematiker, der auf den Feldern Algebraische Geometrie und Zahlentheorie arbeitet.
Inhaltsverzeichnis
Leben und Werk
Nach drei Jahren in der US-Navy erhielt er seinen B.A. von der Harvard University 1946 und promovierte 1950 bei Emil Artin an der Princeton University. Dort war er auch von 1950 bis 1954 Professor, bevor er an die Harvard Universität ging. 1990 ging er an die University of Texas at Austin.
In seiner Doktorarbeit „Fourier analysis in number fields and Heckes Zetafunctions“ (in Cassels, Fröhlich (Hrsg.) „Algebraic Number Theory“ 1966 veröffentlicht) wandte er die harmonische Analysis in Zahlkörpern an (Fourieranalyse auf adele Gruppe) und erzielte viele Resultate Erich Heckes über L-Funktionen auf anderem Weg.
In Zusammenarbeit mit Emil Artin formulierte er die Klassenkörpertheorie mit Gruppenkohomologie (Galoiskohomologie von idealen Klassen). In „The higher dimensional cohomology groups of class field theory“ (Annals of Mathematics 1952) führte er die Tate-Kohomologiegruppen ein. Auf seinem ICM (International Congress of Mathematicians) Vortrag 1960 „Duality theorems in Galois cohomology over number fields“ formulierte er seine Dualitätssätze (Tate-Dualität). Seine Tate-Shafarevich-Gruppen sind von fundamentaler Bedeutung für die arithmetische Geometrie. Sie messen grob gesagt, inwieweit die Varietät vom Hasse-Prinzip abweicht, nach dem man von der p-adischen („lokal“) und reellen Lösbarkeit auf die Lösbarkeit in rationalen Zahlen („global“) schließen will, was bei quadratischen Formen möglich ist (Hasse), bei kubischen Kurven (elliptische Kurven) aber schon im allgemeinen nicht mehr. Viele von ihm gefundene Resultate zur Galoiskohomologie sind erst in den Büchern von Jean-Pierre Serre publiziert wurden.
„p-divisible groups“ (auch Barsotti-Tate Gruppen genannt) von 1966 (Proc.Conf. Local Fields, Driebergen) behandelt p-adische Galoisdarstellungen, das heißt solche über lokalen Körper der Charakteristik p.
In den 1960er Jahren formulierte er auch die Tate-Vermutungen (engl.) über algebraische Zyklen, die die Wirkung der Galoisgruppe auf die l-adischen Kohomologiegruppen algebraischer Varietäten beschreibt („Algebraic cycles and poles of zeta functions“ in Schilling ed. „Arithmetical algebraic geometry“ 1965). In „Endomorphisms of abelian varieties over finite fields“ (Inventiones Mathematicae 1966) konstruiert er solche Zyklen aus kohomologischen Informationen.
In den 1970er Jahren arbeitete er über algebraische K-Theorie („Relations between K2 and Galois Cohomology“, Inventiones Mathematicae 1976).
In den 1980er Jahren untersuchte er die Stark-Vermutungen über Nullstellen von L-Funktionen im Fall von Funktionenkörpern. Er untersuchte auch die Birch-Swinnerton-Dyer-Vermutungen bzw. ihre Analoga im p-adischen Fall (mit Barry Mazur, Teitelbaum, Inv.Math.1986).
Er gab eine p-adische Uniformisierungstheorie elliptischer Kurven und abelscher Varietäten („Tate-Kurve“) und führte „Rigid analytic spaces“ ein (Inventiones Mathematicae 1971).
Eine Vermutung, die nach ihm und Mikio Sato benannt ist, postuliert eine Wahrscheinlichkeitsverteilung der Phasen der Koeffizienten der Hasse-Weil-Zetafunktion elliptischer Kurven.
Zu seinen Schülern gehören u. a. Ken Ribet, Benedict H. Gross, Carl Pomerance und Joseph Silverman.
Er erhielt 1956 den Colepreis in Zahlentheorie. 1995 erhielt er den Leroy P. Steele Prize der American Mathematical Society, 2002 den Wolf-Preis.
Siehe auch
- Hasse-Witt matrix (en)
- Tate module (en)
Literatur
- Artikel über Tate anlässlich Verleihung Steele-Preis 1995, Notices AMS
Weblinks
- Tate "Endomorphisms of abelian varieties over finite fields" 1966
- Tate "The arithmetic of elliptic curves", Inv.Math.1974
Personendaten NAME Tate, John Torrence KURZBESCHREIBUNG US-amerikanischer Mathematiker GEBURTSDATUM 13. März 1925 GEBURTSORT Minneapolis
Wikimedia Foundation.