- Kurt Mahler
-
Kurt Mahler (* 26. Juli 1903 in Krefeld; † 25. Februar 1988 in Canberra, Australien) war ein deutschstämmiger britischer Mathematiker, der sich vor allem mit Zahlentheorie beschäftigte (Theorie p-adischer Zahlen).
Inhaltsverzeichnis
Leben und Werk
Im Alter von 5 Jahren erkrankte Kurt Mahler an Tuberkulose. Aufgrund der gesundheitlichen Probleme - er musste mehrmals operiert werden und hatte fortan ein steifes Bein - verließ er als Dreizehnjähriger die Schule, um sich zum Werkzeugmacher ausbilden zu lassen. Nebenbei brachte er sich selbst mathematische Grundlagen in den Bereichen Analysis, analytische Geometrie und Trigonometrie bei, indem er Werke bedeutender Mathematiker wie Edmund Landau, David Hilbert oder Felix Klein las. Er hoffte, mithilfe seiner Ausbildung und der mathematischen Kenntnisse an einer technischen Universität studieren zu können.
Allerdings hatte Mahlers Vater heimlich die kleinen mathematischen Artikel, die Mahler schrieb, an den örtlichen Schuldirektor, einen Mathematiker, weitergegeben. Dieser sendete sie an Klein, bei dem er einst studiert hatte, der sie wiederum an Carl Ludwig Siegel weitergab. So konnte Mahler sich dank Siegels Fürsprache 1923 an der Universität Frankfurt für Mathematik einschreiben, wo er u.a. bei Max Dehn, Ernst Hellinger, Siegel und Otto Szasz hörte. 1925 wechselte er nach Göttingen, wo er Vorlesungen von Emmy Noether, Richard Courant, Edmund Landau, Max Born, David Hilbert, Alexander Markowitsch Ostrowski, Werner Heisenberg hörte und als unbezahlter Assistent für Norbert Wiener tätig war. Seine Dissertation über Nullstellen der Gamma-Funktion, gewidmet dem Schuldirektor, veröffentlichte er 1927 in Frankfurt.
1933 wurde er nach Königsberg berufen, musste aber wegen seiner jüdischen Herkunft emigrieren und ging 1933/34 nach Manchester zu Louis Mordell. Ein Jahr später ging er nach Groningen, wo ein Fahrradunfall 1936 sein altes Knieleiden wieder hervorrief und er deshalb zur Erholung in die Schweiz weiterzog. 1937 kehrte er zurück nach Manchester, wurde aber 1940 drei Monate als „feindlicher Ausländer“ auf der Isle of Man interniert.
Nach seiner Rückkehr nach Manchester bekam Mahler 1941 eine Assistentenstelle, 1944 wurde er Dozent. 1946 wurde er britischer Staatsbürger, ein Jahr später erhielt er den ersten persönlichen Professorenstuhl der Universität. 1948 nahm die Royal Society Mahler auf. Mahler blieb bis 1963 in Manchester, ehe er eine Professorenstelle an der Australian National University in Canberra annahm. 1968 verließ er Australien, um an der Ohio State University in Columbus (Ohio) als Professor für Mathematik zu lehren. 1972 ging er in Ruhestand und kehrte nach Australien zurück.
Mahler zeigte 1946, dass die Zahl 0,1234567891011.., die aus der Aneinanderreihung der Dezimalziffern aller natürlichen Zahlen entsteht, transzendent ist. Sein Hauptarbeitsgebiet waren die p-adischen Zahlen, diophantische Approximationen, Geometrie der Zahlen und Maße im Raum der Polynome. Von ihm stammt die Einteilung der transzendentalen Zahlen in S, T, U Klassen (die jeweils algebraisch unabhängig sind)[1], wobei Mahler bewies, dass fast alle reellen Zahlen zur S-Klasse gehören (ein Beispiel ist die Eulersche Zahl e).[2].
Einer seiner Doktoranden ist Alf van der Poorten.
Auszeichnungen
- Mitglied der Royal Society (1948)
- Berwick Prize der London Mathematical Society (1950)
- LMS De Morgan Medal (1971)
- Lyle Medal der Australian Academy of Science (1977)
- Ehrenmitglied der Australian Mathematical Society (1986)
Weblinks
- Literatur von und über Kurt Mahler im Katalog der Deutschen Nationalbibliothek
- Kurt Mahler. In: MacTutor History of Mathematics archive (englisch)
- Liste seiner Veröffentlichungen (englisch), viele online, darunter seine Erinnerungen "Fifty years as a mathematician", Journal of Number Theory 1982
- Seite über Kurt Mahler beim Australian Science Archive project (englisch)
- Eintrag im Archiv der Royal Society
- Biographie von van der Poorten und John Coates
Einzelnachweise
- ↑ Mahler Zur Approximation der Exponentialfunktion und des Logarithmus, Teil 1,2, Journal für Reine und Angewandte Mathematik, Bd. 166, 1932, S.118-150. Eine äquivalente Einteilung fand Jurjen Koksma 1939.
- ↑ Die U-Klasse ist überabzählbar, zu ihr gehören die Liouville-Zahlen. Die Existenz einer Zahl der T-Klasse wurde 1968 von Wolfgang Schmidt bewiesen
Wikimedia Foundation.