- Multicore-Prozessor
-
Der Begriff Mehrkernprozessor (auch Multicore-Prozessor oder Multikernprozessor) bezeichnet einen Mikroprozessor mit mehr als einem vollständigen Hauptprozessor auf einem einzigen Chip. Sämtliche Ressourcen mit Ausnahme des Bus und eventuell einiger Caches sind repliziert. Es handelt sich also um mehrere vollständige, weitgehend voneinander unabhängige Prozessoren inklusive eigener arithmetisch-logischer Einheit (ALU), Registersätze und, sofern überhaupt vorhanden, Floating Point Unit (FPU).
Als Doppelkernprozessor (auch Dual-Core-Prozessor) bezeichnet man einen Mehrkernprozessor mit zwei Hauptprozessoren. Mikroprozessoren mit einem Hauptprozessor bezeichnet man zur Abgrenzung als Einzelkernprozessor (auch Single-Core-Prozessor). Diese Terminologie lässt sich entsprechend fortsetzen. So spricht man bei vier Kernen von einem Vierkernprozessor (auch Quad-Core-Prozessor), wobei ein Vierkernprozessor nicht notwendigerweise aus zwei Doppelkernprozessoren bestehen muss, sondern auch aus vier diskreten Kernen bestehen kann.
Multi-Threaded-CPUs sind mehrfädige (engl. multithreading) Prozessorkerne mit mehreren Programmzählern und Registersätzen, die sich gegenüber dem System aber als mehrere Kerne melden. Diese Technik kann je nach Aufwand im Prozessordesign unterschiedlich effizient umgesetzt sein. Intel nennt sie in einigen Prozessorlinien Hyper-Threading, IBM SMT (Symmetrisches Multi-Threading). Der IBM Power5-Prozessor ist z. B. ein Doppelkernprozessor mit zwei Threads pro Kern, der Sun UltraSPARC T1-Prozessor ein Achtkern-Prozessor mit vier Threads pro Kern.
Inhaltsverzeichnis
Einführung
Bis zum Jahre 2005 dominierten die Einzelkernprozessoren den PC-Bereich. In den Jahren zuvor versuchte man in wenigen Fällen, durch den Einsatz von zwei oder mehr Einzelprozessoren die Leistungsfähigkeit zu erhöhen. Die gängige Variante zur Erhöhung der Leistungsfähigkeit war neben neuen Befehlssätzen wie MMX und mehr Transistoren jedoch die Erhöhung der Taktfrequenz. Doch dies ging bei Frequenzen um 4 GHz mit einer nicht mehr sinnvoll handhabbaren Abwärme einher. Eine Möglichkeit der Fortentwicklung war die Einführung von Mehrkernprozessoren. So wurde schon in der zweiten Hälfte des Jahres 2006 das Angebot in der oberen Hälfte des Leistungsspektrums von PC-Prozessoren von der Doppelkernvariante dominiert. Somit ist dieses Jahr als eine Abkehr von einem Prinzip festzuhalten, das seit der Geburtsstunde der Prozessoren Gültigkeit hatte. Heutzutage werden nur noch in wenigen Fällen Single-Cores verbaut, da die entsprechenden Dual-Cores oft nur noch wenig teurer und aktuell schon für unter dreißig Euro zu haben sind. Auch sind die Preise der Quad-Core-Prozessoren seit April 2007 drastisch gefallen, sodass günstige Modelle unter 150€ gelistet sind und auch AMDs Triple-Cores deuten auf den Trend zu immer mehr Prozessorkernen.
Sinn und Zweck
Mehrkernprozessoren wurden entwickelt, weil die Kosten für den Einsatz eines einzelnen Chips mit mehreren Ressourcen häufig geringer sind als bei mehreren einzelnen Chips. Anders betrachtet kann mit der gleichen Anzahl an Chip-Sockeln und Chips theoretisch eine vervielfachte Rechenleistung erzielt werden (das n-fache bei n Kernen). In der Realität kann diese Steigerung jedoch fast nie erreicht werden, die Leistungssteigerung schwankt, je nachdem, wie gut die Software parallelisiert ist.
Aber auch im Alltag ist mit Mehrkernprozessoren ein deutlich flüssigeres Arbeiten möglich, da ein weiterer Kern für neue Aufgaben bereit steht und das System dann nicht erst warten muss, bis Ressourcen verfügbar sind. Da alle führenden Prozessorhersteller Mehrkernprozessoren auf den Markt gebracht haben, ist damit zu rechnen, dass immer mehr Programme für Mehrkernprozessoren optimiert werden.
AMDs Opteron-Doppelkernprozessoren produzieren nur unwesentlich mehr Abwärme als ein AMD Opteron mit nur einem Prozessorkern. Damit wurde z. B. die Prozessor-Abwärmeleistung für ein Mehrprozessorsystem halbiert. Dies ist für HPC-Cluster (high performance computing), aber vor allem für die Blade-Center wesentlich, da hier auf engstem Raum eine Vielzahl von Prozessoreinheiten (Blades) verbaut sind und somit ein 19-Zoll-Industrieschrank eine Abwärmeleistung von über 20 kW produzieren kann. Diese ist in der Regel durch konvektive Kühlung nicht mehr abführbar.
Mehrkernprozessoren stellen neben einer Erhöhung der Taktfrequenz und dem Pipelining eine von vielen Möglichkeiten dar, die Leistung von Mikroprozessoren zu erhöhen. Die rein theoretische Leistungssteigerung ist vergleichsweise effizient und beträgt maximal 100 % (gegenüber einem einzelnen Kern) pro zusätzlichem Kern. In der Praxis hängt die Leistungssteigerung aber stark von dem Parallelisierungsgrad des ausgeführten Programms und des verwendeten Betriebssystems ab. Unix, der SMP-Linux-Kernel und Microsoft Windows ab XP unterstützen Mehrkernprozessoren (Windows NT und 2000 erkennen einen Mehrkernprozessor als mehrere Einzelkernprozessoren; dadurch sind zwar auch alle Kerne nutzbar, spezielle Mehrkernprozessoroptimierungen aber können nicht greifen). Dabei verteilt das Betriebssystem Prozesse und Anwendungen auf die einzelnen Prozessoren, die diese dann unabhängig parallel ausführen. Wird hingegen nur eine Anwendung ausgeführt, so muss diese für die mehreren Prozessoren parallelisiert werden. Das bedeutet, die Anwendung wird so modifiziert, dass sie komplett oder auch nur Fragmente davon gleichzeitig auf mehreren Prozessoren als Threads ausgeführt werden. Dazu gibt es grundsätzlich zwei Parallelisierungsstrategien: SMP (Shared-Memory-Programmierung) und MPI (Message-Passing-Interface-Programmierung).
So unterscheiden sich verschiedene Architekturen. Während manche Architekturen leistungssteigernde Komponenten wie z. B. einen Shared Cache auf dem Chip unterbringen (z. B. IBMs POWER4 und folgende, Sun UltraSPARC IV+ und T1), setzen andere Architekturen lediglich mehrere Einzelkerne mit eigenem Cache auf einen Chip. Prozessorbasiert lizenzierende Softwareunternehmen haben verschiedene Konzepte entwickelt, um auf diese Entwicklungen zu reagieren. So zählt z. B. Oracle bei Mehrkernprozessoren jeden Prozessorkern auf einem Chip mit 0,25 (Sun UltraSPARC T1), 0,5 (Intel und AMD CPUs) oder 0,75 (HP, IBM und Sun RISC CPUs). Microsoft hat angekündigt, nicht mehr die Kerne, sondern die Chips als Basis für die Lizenzierung heranzuziehen, womit auf einen Mehrkernprozessor nur noch eine Lizenz fällt.
Shared-Memory-Programmierung
In der Shared-Memory-Programmierung erfolgt die Parallelisierung, beispielsweise bei OpenMP, entweder automatisch durch Compiler-Optionen oder direkt mit Parallelisierungs-Direktiven bzw. mit Verwendung von parallelen mathematischen Bibliotheken in der Anwendung. OpenMP-Programme haben in der Regel eine wesentlich bessere parallele Effizienz als mit Message Passing Interface (MPI) parallelisierte Programme, da die Prozessor-Kommunikation direkt über einen schnellen breitbandigen Datenbus geht. Nachteil ist, dass große Shared-Memory-Parallelrechner relativ teuer sind und die Prozessoranzahl begrenzt ist. Ein klassisches SMP-System ist die SGI Origin von Silicon Graphics.
Message-Passing-Programmierung
Das Rechengebiet (Domain) wird bei der Message-Passing-Programmierung zerlegt und auf alle Prozessoren verteilt (Domain-Decomposition). Jeder Prozessor rechnet lokal und kommuniziert über optimierte MPI-Funktionen mit den anderen Prozessoren. Programmbibliotheken sind beispielsweise MPI, PVM (Parallele Virtuelle Maschine) oder SHMEM[1]. Vorteil ist die extrem kostengünstige Hardware. Das bedeutet, dass solche Rechner aus Standard-PC-Komponenten gebaut werden können, wie sie bei jedem PC-Händler zu finden sind. Sie sind theoretisch unendlich skalierbar, d.h. es können beliebig viele Prozessoren zusammengeschlossen werden. Diese kommunizieren dann in der Regel über IP (Ethernet, Fast Ethernet, Gigabit Ethernet, Myrinet-2000, InfiniBand, Quadrics). In der Regel fällt aber die Effizienz mit der Anzahl der Prozessoren, da die Interprozessorkommunikation zu stark zunimmt. Es gibt aber auch Anwendungen die umgekehrt skalieren, da hier Effekte des Domain-Decomposition einen effizienteren Umgang mit dem Speicher ermöglichen.
Varianten
Symmetrische Mehrkernprozessoren
In symmetrischen Mehrkernprozessoren sind die einzelnen Kerne gleich. Ein für diesen Prozessor übersetztes Programm kann auf jedem beliebigen seiner Kerne ausgeführt werden. Bei dieser Art von Mehrkernprozessoren handelt es sich um SMP-Systeme. Da es sich bei Mehrkernprozessoren um eine Variante des SMP handelt, ist der Sinn und Zweck eines Mehrkernprozessors der, SMP Platz sparend umzusetzen. Ein Beispiel für so ein 8-fach-SMP-System auf einem Chip ist der Sun UltraSPARC T1-Prozessor.
Asymmetrische Mehrkernprozessoren
Bei asymmetrischen Mehrkernprozessoren gibt es verschiedene Kerne, die unterschiedlich gesteuert werden und eine unterschiedliche Maschinensprache verstehen. Ein Programm kann nur auf einem seiner Übersetzung entsprechenden Kern ausgeführt werden. Bei dieser Art von Mehrkernprozessoren arbeiten einige der Kerne wie klassische Hauptprozessoren, andere wie asynchrone Coprozessoren. Ein Beispiel für solch ein System ist der Cell-Prozessor von IBM.
Liste einiger Mehrkernprozessoren
Doppelkernprozessoren
Derzeit werden folgende Doppelkernprozessoren gefertigt oder sind geplant:
AMD:
- AMD Athlon 64 FX: seit Januar 2006 erhältlich
- AMD Athlon 64 X2: seit Frühjahr 2005 erhältlich
- AMD Athlon X2: seit Juni 2007 erhältlich
- AMD Opteron: seit April 2005 erhältlich
- AMD Turion 64 X2: seit Mai 2006 erhältlich
ARM:
- Verschiedene Implementationen der ARM-Architektur
- PA-RISC PA-8800
- PA-8900: seit 2005
IBM:
- IBM POWER4: seit 2001 erhältlich
- IBM POWER4+: seit 2002 erhältlich
- IBM POWER5: seit November 2004 erhältlich
- IBM POWER5+: seit Oktober 2005 erhältlich
- IBM PowerPC 970MP: am 6. Juni 2005 vorgestellt
- Intel Core Duo: seit Januar 2006 erhältlich
- Intel Core 2 Duo: seit Juli 2006 erhältlich
- Intel Core 2 Extreme: seit Juli 2006 erhältlich
- Intel Pentium D: seit Frühjahr 2005 erhältlich
- Intel Pentium Dual-Core: seit Juni 2007 erhältlich
- Intel Pentium Extreme Edition: seit Frühjahr 2005 erhältlich
- Intel Xeon DP: seit Oktober 2005 erhältlich
- Intel Itanium 2: seit 2006 erhältlich
- Sun UltraSPARC IV: seit Februar 2004 erhältlich
- Sun UltraSPARC IV+: seit September 2005 erhältlich
Sonstige:
- Fujitsu SPARC64 VI: seit April 2007 erhältlich
- VIA Nano: Erwartet für das Jahr 2009
Dreikernprozessoren
Derzeit werden folgende Dreikernprozessoren gefertigt oder sind geplant:
AMD:
- AMD Phenom X3: seit April 2008 erhältlich
- AMD Phenom II X3: seit Februar 2009 erhältlich
Vierkernprozessoren
Derzeit werden folgende Vierkernprozessoren gefertigt oder sind geplant:
AMD:
- AMD Opteron (K10): seit September 2007 erhältlich
- AMD Phenom X4: seit November 2007 erhältlich
- AMD Phenom II X4: seit Januar 2009 erhältlich
IBM:
- Intel Core 2 Extreme: seit November 2006 erhältlich
- Intel Core 2 Quad: seit Anfang 2007 erhältlich
- Intel Xeon: seit Ende 2006 erhältlich
- Intel Core i7: seit November 2008 erhältlich
- Sun UltraSPARC T1: seit Dezember 2005 erhältlich
Sonstige:
- Fujitsu SPARC64 VII: seit Juli 2008 erhältlich
Mehrkernprozessoren mit mehr als vier Prozessorkernen
Derzeit werden folgende Mehrkernprozessoren mit mehr als vier Kernen gefertigt oder sind geplant:
- IBM / Sony / Toshiba Cell: 64-Bit-PowerPC-Kern mit bis zu acht Coprozessoren (SPE, Synergistic Processor Element) (z. B. sieben Kerne bei Playstation 3)
- Sun UltraSPARC T1 (Niagara): vier, sechs oder acht UltraSPARC-Kerne mit je vier Threads – erhältlich seit Dezember 2005
- Sun UltraSPARC T2 (Niagara 2): acht UltraSPARC-Kerne für jeweils acht parallele Threads – erhältlich seit Oktober 2007
- Sun UltraSPARC T2+: SMP-fähige Version des UltraSPARC T2, kann seine acht UltraSPARC-Kerne also mit denen weiterer Prozessoren verbinden – erhältlich seit April 2008
- Intel „Dunnington“: sechs Kerne – erhältlich seit September 2008
- AMD „Istanbul“: sechs Kerne – Einführung voraussichtlich Mitte 2009
- Manycore Prozessoren
- IBM / DARPA / UT-Austin TRIPS: zwei Kerne mit je 16 Executions-Tiles, vier Register- und Data-Tiles, fünf Instruktions-Tiles, ein Control- sowie mehreren Memory- und Network-Tiles
- Intel Terascale: ein Kern mit 80 bis 100 Tiles, davon einige auf SoC-Aufgaben spezialisiert
Siehe auch
Weblinks
- Genereller Vergleich zwischen Mehrkernprozessoren und Einkernprozessoren
- Embedded-Prozessor mit 64 Kernen – Artikel von heise online, vom 21. August 2007
Einzelnachweise
Wikimedia Foundation.