- Riesz-Raum
-
Ein Riesz-Raum ist ein Vektorraum mit einer Verbandsstruktur, die so beschaffen ist, dass sich die lineare und die Verbandsstruktur vertragen. Im Jahr 1928 wurde dieser Raum von Frigyes Riesz definiert[1] und trägt deshalb heute seinen Namen.
Inhaltsverzeichnis
Definition
Sei ein -Vektorraum und eine teilweise geordnete Menge.
Dann heißt ein Riesz-Raum wenn folgende Axiome erfüllt sind:
- Für alle gilt: .
- Für alle gilt: und .
- ist ein Verband.
Anmerkungen
- 1. und 2. bedeuten ist ein geordneter Vektorraum.
- Bei der Formulierung von 2. ist zu beachten, dass sich sowohl auf , als auch auf X bezieht, aus dem Zusammenhang ist meistens klar, welche Ordnungsrelation gemeint ist, so dass üblicherweise auf zusätzliche Indizes verzichtet wird.
- 2. lässt sich auch durch die schwächere Forderung und ersetzen.
- Bezeichnen die Verbandsoperationen, so ist es Konvention, dass stärker binden, als (Klammerregel).
Erste Eigenschaften
Für und gelten folgende Rechenregeln:
- und
- und
- und
- Sei für .
- Dann gilt und .
- und
- und
- Dies bedeutet jeder Riesz-Raum ist ein distributiver Verband.
Beispiele
- Die reellen Zahlen mit der üblichen Anordnung bilden einen Riesz-Raum.
- Der mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Zahlenfolgen mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der reellen Nullfolgen c0 mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Für ist lp mit komponentenweiser Anordnung ein Riesz-Raum.
- Die Menge der beschränkten reellen Folgen mit komponentenweiser Anordnung bildet einen Riesz-Raum.
- Die Menge der stetigen Funktionen auf einem Intervall [a,b] bildet mit punktweiser Anordnung einen Riesz-Raum.
- Die Menge der stetig differenzierbaren Funktionen auf einem Intervall [a,b] bildet einen geordneten Vektorraum mit der punktweisen Anordnung, aber keinen Riesz-Raum.
Integrationstheorie
Riesz-Räume bieten Voraussetzungen für eine abstrakte Maß- und Integrationstheorie. Die zentrale Aussage in diesem Zusammenhang ist der Spektralsatz von Freudenthal. Dieser Satz garantiert für Riesz-Räume auf abstrakte Weise die Approximationseigenschaft von Funktionen durch Treppenfunktionen. Der Satz von Radon-Nikodym und die Poissonsche Summenformel für beschränkte harmonische Funktionen auf der offenen Kreisscheibe sind Spezialfälle des Spektralsatzes von Freudenthal. Dieser Spektralsatz war einer der Ausgangspunkte für die Theorie der Riesz-Räume.
Einzelnachweise
- ↑ * Riesz, Frigyes: Sur la décomposition des opérations fonctionelles linéaires, Atti congress. internaz. mathematici (Bologna, 1928) , 3 , Zanichelli (1930) pp. 143–148
Literatur
- Luxembrg, W.A.J. & Zaanen, A.C.: "Riesz spaces", North-Holland, 1971, ISBN 978-0444866264
- V. I. Sobolev: Riesz space. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8.
Wikimedia Foundation.