- Triplependel
-
Dieser Artikel wurde aufgrund von inhaltlichen Mängeln auf der Qualitätssicherungsseite des Portals Physik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Physik auf ein akzeptables Niveau zu bringen. Dabei werden Artikel gelöscht, die nicht signifikant verbessert werden können. Hilf mit, die inhaltlichen Mängel dieses Artikels zu beseitigen, und beteilige dich an der Diskussion.
Bei einem Multipendel handelt es sich um ein Fadenpendel, an dessen Arm beliebig viele weitere Pendel gehängt werden.
Es entsteht ein unvorhersehbares Bewegungsmuster, welches bereits bei geringfügigen Störungen stark variiert. Es lassen sich chaotische Prozesse leicht simulieren, weshalb es sich zu einem beliebten Modell in der Chaostheorie entwickelt hat.
Inhaltsverzeichnis
Modellvorstellung
Das Modell des Multipendels n-ter Stufe ist ein idealisiertes System eines Fadenpendels, an dessen schwingendem Massenpunkt n − 1 weitere baugleiche Fadenpendel gekoppelt sind. Die verbindenden Fäden zwischen Aufhängepunkt und den Massenpunkten werden als vollkommen unelastische, massenlose Stäbe betrachtet. Das gesamte System wird als reibungsfrei aufgefasst.
Bewegungsgleichungen des Multipendels n-ter Stufe
Die Bewegungsgleichungen für ein Multipendel n-ter Stufe lassen sich mit dem Lagrange-Formalismus zweiter Art herleiten.
Generalisierte Koordinaten
Mittels Trigonometrie erhält man:
...
Folglich können die kartesischen Koordinaten (xk | yk) der Massenpunkte mk für k ∈ {1,...,n} und ihre zeitlichen Ableitungen in folgender Form geschrieben werden:
Lagrange-Funktion
Kinetische Energie T und Potential V ergeben:
Somit ist die Lagrange Funktion L = T − V:
Bewegungsgleichungen
Die Bewegungsgleichungen des Multipendels n-ter Stufe ergeben sich aus
bzw.
für j ∈ {1,...,n}.
Die Bewegungsgleichungen für die generalisierten Koordinaten () stellen ein nichtlineares System von n Differentialgleichungen zweiter Ordnung dar, welches für n > 1 analytisch nicht lösbar ist.
Es kann bei 2n bekannten Nebenbedingungen, beispielsweise der Startwerte
mittels numerischer Verfahren gelöst werden. Zwecks Vereinfachung der Bewegungsgleichungen können Kleinwinkelnäherungen vorgenommen werden.Für Stufen n > 1 entstehen chaotische Bewegungsmuster. Hier führen bereits geringfügige Änderungen der lokalen Koordinaten und/oder ihrer zeitlichen Ableitungen zu deutlichen Änderungen im weiteren Bewegungsablauf.
Bewegungsgleichungen für j ∈ {1,2,3}
Mathematisches Pendel
Für n = 1 ergibt sich der einfache Fall des mathematischen Pendels.
Hier ergeben sich kinetische Energie T und Potential V zu
mit .
Entsprechend ist die Bewegungsgleichung:Mit der Kleinwinkelnäherung lässt sich die Gleichung vereinfachen:
Eine zweckmäßige Lösung der Bewegungsgleichung ist
,
sodass bei bekannten Startbedingungen für den Parameter α gilt:
Das Pendel schwingt entsprechend harmonisch mit der Periode:Doppelpendel
Der Fall n = 2 stellt das Doppelpendel dar.
Hier ergeben sich kinetische Energie T und Potential V zu:
Entsprechend sind die Bewegungsgleichungen:und
Triplependel
Der Fall n = 3 stellt das Triplependel dar.
Hier ergibt sich die kinetische Energie T zu:
Für das Potential V gilt:
Entsprechend sind die Bewegungsgleichungen:
und
und
Simulation der Trajektorien
Literatur
- Georg Hamel: Theoretische Mechanik. Springer, Berlin 1967. Berichtiger Reprint 1978, ISBN 3-540-03816-7
- Friedhelm Kuypers: Klassische Mechanik. 5. Auflage. VCH, Weinheim 1997, ISBN 3-527-29269-1
- Landau / Lifšic: Lehrbuch der theoretischen Physik. Band 1: Mechanik. 14. Auflage. Deutsch, Thun 1997, ISBN 3-8171-1326-9
Quellen
- L. D. Landau, E. M. Lifschitz: Volume 1 of Course of Theoretical Physics. 3rd Edition 1976, ISBN 0-7506-2896-0, §5, S. 11 f. (Englisch)
- Herleitung der Differentialgleichungen zur Beschreibung des Doppelpendels (Englisch)
Siehe auch
Mathematisches Pendel, Doppelpendel, Magnetisches Pendel, Klassische Mechanik, Phasenraum, Henri Poincaré, KAM-Theorem
Weblinks
Wikimedia Foundation.