Ähnlichkeitsabbildung

Ähnlichkeitsabbildung

Als Ähnlichkeitsabbildung (oder Ähnlichkeit) wird in der Geometrie, einem Teilgebiet der Mathematik eine Affinität bezeichnet, die Streckenverhältnisse und Winkelgrößen unverändert lässt, aber im Allgemeinen die Längen von Strecken ändern. Der Begriff ist daher nur in solchen affinen Räumen sinnvoll, in denen ein Winkelbegriff und ein Längenbegriff vorhanden ist. Meist handelt es sich dabei um affine Punkträume, denen ein reeller euklidischer Raum als Raum der Verbindungsvektoren zugeordnet sind (siehe Euklidischer Raum#Der euklidische Punktraum). Figuren, die durch eine Ähnlichkeitsabbildung auf einander abgebildet werden können, heißen ähnlich zueinander.

In der Geodäsie und Astrometrie wird die Abbildung als Ähnlichkeitstransformation bezeichnet. Ihre 4 Transformationsparameter sind 1 Drehwinkel, 1 Maßstabsfaktor und 2 Verschiebungswerte. Man verwendet sie bei einfachen Koordinatentransformationen, etwa bei einer kleinräumigen Vermessung zum Anschluss an die Landeskoordinaten, oder bei Astrografen-Aufnahmen zur Plattenreduktion auf 2 oder mehr Anschlusssterne.

Inhaltsverzeichnis

Ähnlichkeiten als spezielle Affinitäten

Die Menge der Ähnlichkeiten auf einem affinen Raum A bildet eine Teilmenge der Affinitäten auf A. Ist die Dimension von A größer oder gleich 2, dann existieren auch Affinitäten, die keine Ähnlichkeiten sind. Bezüglich der Verkettung bilden die Ähnlichkeiten sogar eine Untergruppe dieser Gruppe von Affinitäten.

Auch alle Kongruenzabbildungen zählen zu den Ähnlichkeiten (sie bilden eine - im Allgemeinen echte - Untergruppe), da sie unter anderem winkel- und verhältnistreu sind, also Winkel und Streckenverhältnisse invariant lassen. Sind nur Ähnlichkeiten gemeint, die keine Kongruenzabbildungen sind, so spricht man von echten Ähnlichkeiten.

Klassifikation

Es gibt zwei Typen von echten Ähnlichkeiten, also Ähnlichkeiten, die keine Kongruenzabbildungen sind:

Koordinatendarstellung

In der analytischen Geometrie wird eine Ähnlichkeitsabbildung nach Wahl eines euklidischen affinen Koordinatensystems durch eine Abbildungsgleichung der Form

\vec{X'} = m \cdot A \vec{X} + \vec{b}

beschrieben, wobei m > 0 eine reelle Zahl und A eine orthogonale Matrix ist. Handelt es sich um eine gleichsinnige Ähnlichkeitsabbildung, so hat die Determinante von A den Wert 1, andernfalls den Wert -1.

Siehe auch

Literatur

  • Hermann Schaal: Lineare Algebra und Analytische Geometrie - Band 1, Vieweg-Verlag Braunschweig, ISBN 3528030569
  • Heribert Kahmen: Vermessungskunde, 18.Auflage, de Gruyter-Lehrbuch, Berlin 1993

Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Ähnlichkeit (Matrix) — Die Ähnlichkeit im mathematischen Teilgebiet der linearen Algebra ist eine Äquivalenzrelation auf der Klasse der quadratischen Matrizen. Ähnliche Matrizen beschreiben dieselbe lineare Abbildung (Endomorphismus) bei Verwendung unterschiedlicher… …   Deutsch Wikipedia

  • Ähnlichkeitstransformation — Die Ähnlichkeit im mathematischen Teilgebiet der linearen Algebra ist eine Äquivalenzrelation auf der Klasse der quadratischen Matrizen. Ähnliche Matrizen beschreiben dieselbe lineare Abbildung (Endomorphismus) bei Verwendung unterschiedlicher… …   Deutsch Wikipedia

  • Faktormenge (Mathematik) — In der Mathematik möchte man in vielen Zusammenhängen Objekte, die sich in gewissen Aspekten ähneln, als gleichwertig ansehen. Eine Formalisierung der Mindestanforderungen an einen solchen Gleichwertigkeitsbegriff ist der Begriff der… …   Deutsch Wikipedia

  • Index (Äquivalenzrelation) — In der Mathematik möchte man in vielen Zusammenhängen Objekte, die sich in gewissen Aspekten ähneln, als gleichwertig ansehen. Eine Formalisierung der Mindestanforderungen an einen solchen Gleichwertigkeitsbegriff ist der Begriff der… …   Deutsch Wikipedia

  • Quotientenmenge — In der Mathematik möchte man in vielen Zusammenhängen Objekte, die sich in gewissen Aspekten ähneln, als gleichwertig ansehen. Eine Formalisierung der Mindestanforderungen an einen solchen Gleichwertigkeitsbegriff ist der Begriff der… …   Deutsch Wikipedia

  • Repräsentant (Mathematik) — In der Mathematik möchte man in vielen Zusammenhängen Objekte, die sich in gewissen Aspekten ähneln, als gleichwertig ansehen. Eine Formalisierung der Mindestanforderungen an einen solchen Gleichwertigkeitsbegriff ist der Begriff der… …   Deutsch Wikipedia

  • Trigonalisierbar — Die Trigonalisierung ist ein Begriff aus der linearen Algebra, einem Teilgebiet der Mathematik. Sie bezeichnet eine Ähnlichkeitsabbildung einer quadratischen Matrix auf eine obere Dreiecksmatrix. Dies ist nicht für jede quadratische Matrix… …   Deutsch Wikipedia

  • Trigonalisierbare Matrix — Die Trigonalisierung ist ein Begriff aus der linearen Algebra, einem Teilgebiet der Mathematik. Sie bezeichnet eine Ähnlichkeitsabbildung einer quadratischen Matrix auf eine obere Dreiecksmatrix. Dies ist nicht für jede quadratische Matrix… …   Deutsch Wikipedia

  • Trigonalisierung — Die Trigonalisierung ist ein Begriff aus der linearen Algebra, einem Teilgebiet der Mathematik. Sie bezeichnet eine Ähnlichkeitsabbildung einer quadratischen Matrix auf eine obere Dreiecksmatrix. Dies ist nicht für jede quadratische Matrix… …   Deutsch Wikipedia

  • Vertreter (Mathematik) — In der Mathematik möchte man in vielen Zusammenhängen Objekte, die sich in gewissen Aspekten ähneln, als gleichwertig ansehen. Eine Formalisierung der Mindestanforderungen an einen solchen Gleichwertigkeitsbegriff ist der Begriff der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”