Encyclopedia of Triangle Centers
- Encyclopedia of Triangle Centers
-
Die Encyclopedia of Triangle Centers (ETC) ist eine Online-Liste mit fast 3600 (Oktober 2010) Dreieckspunkten. Sie wird gepflegt durch Clark Kimberling, Professor für Mathematik an der University of Evansville.
Jedem Eintrag in der Liste wird eine sog. Kimberling-Nummer in der Form X(n) zugewiesen. Zu den Informationen zu jedem Punkt gehören seine trilinearen und baryzentrischen Koordinaten sowie seine Lage zu Geraden, die andere identifizierte Punkte verbinden. Die ETC bietet ebenfalls einen Glossar von Begriffen und Definitionen an.
Liste einiger Dreieckspunkte mit Kimberling-Nummer
-
Weblinks
Encyclopedia of Triangle Centers
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Encyclopedia of Triangle Centers — The Encyclopedia of Triangle Centers (ETC) is an on line list of more than 3,000 points or centers associated with the geometry of a triangle. It is maintained by Clark Kimberling, Professor of Mathematics at the University of Evansville.Each… … Wikipedia
Triangle — This article is about the basic geometric shape. For other uses, see Triangle (disambiguation). Isosceles and Acute Triangle redirect here. For the trapezoid, see Isosceles trapezoid. For The Welcome to Paradox episode, see List of Welcome to… … Wikipedia
List of triangle topics — This list of triangle topics includes things related to the geometric shape, either abstractly, as in idealizations studied by geometers, or in triangular arrays such as Pascal s triangle or triangular matrices, or concretely in physical space.… … Wikipedia
Cubic plane curve — A selection of cubic curves. See information page for details. Cubic curve redirects here. For information on polynomial functions of degree 3, see Cubic function. In mathematics, a cubic plane curve is a plane algebraic curve C defined by a… … Wikipedia
Fermat point — In geometry, the first Fermat point, or simply the Fermat point, also called Torricelli point, is the solution to the problem of finding a point F inside a triangle ABC such that the total distance from the three vertices to point F is the… … Wikipedia
Brocard points — are special points within a triangle. They are named after Henri Brocard (1845 ndash; 1922), a French mathematician. DefinitionIn a triangle ABC with sides a , b , and c , where the vertices are labeled A , B and C in counterclockwise order,… … Wikipedia
Malfatti circles — In geometry, the Malfatti circles are three circles inside a given triangle such that each circle is tangent to the other two and to two sides of the triangle. They are named after Gian Francesco Malfatti, who made early studies of the problem of … Wikipedia
Ausgezeichnete Punkte im Dreieck — Umkreismittelpunkt (blau), Schwerpunkt (rot) und Höhenschnittpunkt (grün) liegen auf einer Geraden In der Geometrie versteht man unter den ausgezeichneten Punkten (auch: merkwürdigen Punkten) eines Dreiecks in erster Linie die folgenden vier… … Deutsch Wikipedia
Johnson circles — In geometry, a set of Johnson circles comprise three circles of equal radius r sharing one common point of intersection H . In such a configuration the circles usually have a total of four intersections (points where at least two of them meet):… … Wikipedia
Trilinear coordinates — In geometry, the trilinear coordinates of a point relative to a given triangle describe the relative distances from the three sides of the triangle. Trilinear coordinates are an example of homogeneous coordinates. They are often called simply… … Wikipedia