Clebsch-Gordan-Koeffizient

Clebsch-Gordan-Koeffizient

Die Clebsch-Gordan-Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses übergeht. Sie werden zur Berechnung der Spin-Bahn-Kopplung sowie im Isospin-Formalismus verwendet.

Sie wurden nach Alfred Clebsch (1833–1872) und Paul Gordan (1837–1912) benannt.

Inhaltsverzeichnis

Drehimpulskopplung

Siehe auch den Abschnitt "Addition von Drehimpulsen" im Artikel Drehimpulsoperator.

Man geht von zwei Drehimpulsen J1 und J2 aus, die jeweils die Quantenzahlen j1 und m1 (z-Komponente), bzw. j2 und m2 besitzen. Dabei nehmen m1 und m2 folgende Werte an: m1 = [ − j1,...,j1] und m2 = [ − j2,...,j2] und die Drehimpulse vertauschen untereinander: [J1,J2] = 0 (s. Quantenmechanischer Kommutator). Das bedeutet, dass man die einzelnen Drehimpulse unabhängig voneinander scharf messen kann. Jeder dieser Drehimpulse hat seinen eigenen Eigenraum, der durch die Eigenvektoren \left| j_1, m_1 \right\rangle bzw. \left| j_2, m_2 \right\rangle aufgespannt wird. In der Basis dieser Eigenvektoren \left| j_1, m_1 \right\rangle hat J1 eine einfache diagonale Gestalt; analoges gilt für J2.

Nun koppeln die einzelnen Drehimpulse J1 und J2 zu einem Gesamtdrehimpuls  \vec{J} = \vec{J_1} + \vec{J_2} (Addition der einzelnen Komponenten). Dieser Gesamtdrehimpuls besitzt nun die Quantenzahlen J und M, die folgende Werte annehmen können:

 | j_1 - j_2 | \le J \le | j_1 + j_2 | und M = [ − J,...,J] (in ganzzahligen Schritten).

Da der Gesamtdrehimpuls  \vec{J} aus beiden Drehimpulsen J1 und J2 besteht, kann er im Produktraum der einzelnen Eigenzustände dargestellt werden:

 \left| j_1, m_1; j_2, m_2 \right\rangle = \left| j_1, m_1 \right\rangle \otimes  \left| j_2, m_2 \right\rangle ,

wobei \otimes das Tensorprodukt bezeichnet.

Allerdings sind dies keine Eigenvektoren des Gesamtdrehimpulses  \vec{J} , so dass er in dieser Basis keine Diagonalgestalt besitzt.

Eigenbasis des Gesamtdrehimpulsoperators

Die Eigenvektoren von  \vec{J} werden durch die Quantenzahlen J, M, j1 und j2 eindeutig festgelegt. Bezüglich der neuen Basis aus Eigenvektoren hat der Gesamtdrehimpuls J wieder eine einfache Diagonalgestalt. Es gilt:

 \vec{J}^2 \left| J, M, j_1, j_2 \right\rangle = J(J+1) \hbar^2 \left| J, M, j_1, j_2 \right\rangle
 J_z \left| J, M, j_1, j_2 \right\rangle = M \hbar \left| J, M, j_1, j_2 \right\rangle

Die Clebsch-Gordan-Koeffizienten geben nun den Übergang der Produktbasis \left| j_1, m_1; j_2, m_2 \right\rangle in die Eigenbasis  \left| J, M, j_1, j_2 \right\rangle an (unitäre Transformation):

 \left| J, M, j_1, j_2 \right\rangle = \sum_{m_1, m_2} \left| j_1, m_1; j_2, m_2 \right\rangle \langle\ j_1, m_1; j_2, m_2 | J, M, j_1, j_2 \rangle.

Dabei sind  \langle\ j_1, m_1; j_2, m_2 | J, M, j_1, j_2 \rangle die Clebsch-Gordan-Koeffizienten.

Eigenschaften der Clebsch-Gordan-Koeffizienten

  • Die Clebsch-Gordan-Koeffizienten sind gleich Null, wenn eine der beiden Bedingungen |j_{1}-j_{2}|\le J\le j_{1}+j_{2} und M = m1 + m2 nicht erfüllt ist:
\langle j_{1},m_{1};j_{2},m_{2}|J,M,j_{1},j_{2}\rangle\neq0\quad\Rightarrow\quad|j_{1}-j_{2}|\le J\le j_{1}+j_{2}\ \ \wedge\ \ M=m_{1}+m_{2}
  • Die Clebsch-Gordan-Koeffizienten sind konventionsgemäß reell:
\langle j_{1},m_{1};j_{2},m_{2}|J,M,j_{1},j_{2}\rangle\in\mathbb{R}
  • Folgender Clebsch-Gordan-Koeffizient zu M = J ist konventionsgemäß positiv:
\langle j_{1},j_{1};j_{2},J-j_{1}|J,J,j_{1},j_{2}\rangle>0
  • Der Clebsch-Gordan-Koeffizient zu M ist betragsmäßig gleich dem Clebsch-Gordan-Koeffizient zu M gemäß:
\langle j_{1},m_{1};j_{2},m_{2}|J,M,j_{1},j_{2}\rangle=(-1)^{j_{1}+j_{2}-J}\langle j_{1},-m_{1};j_{2},-m_{2}|J,-M,j_{1},j_{2}\rangle
  • Die Clebsch-Gordan-Koeffizienten erfüllen die Orthogonalitätsrelation:
\sum_{m_{1},m_{2}}\langle j_{1},m_{1};j_{2},m_{2}|J,M,j_{1},j_{2}\rangle\langle j_{1},m_{1};j_{2},m_{2}|J',M',j_{1},j_{2}\rangle=\delta_{JJ'}\delta_{MM'}
  • Die Clebsch-Gordan-Koeffizienten erfüllen die Orthogonalitätsrelation:
\sum_{J,M}\langle j_{1},m_{1};j_{2},m_{2}|J,M,j_{1},j_{2}\rangle\langle j_{1},m_{1}';j_{2},m_{2}'|J,M,j_{1},j_{2}\rangle=\delta_{m_{1}m_{1}'}\delta_{m_{2}m_{2}'}

Ermittlung der Clebsch-Gordan-Koeffizienten

Der Eigenzustand mit J = j1 + j2 und M = J lässt sich sofort in der Produktbasis angeben (nur ein Clebsch-Gordan-Koeffizient gleich 1, alle anderen Null):

|j_{1}+j_{2},j_{1}+j_{2},j_{1},j_{2}\rangle=|j_{1},j_{1};j_{2},j_{2}\rangle

Durch Anwenden des Absteigeoperators J_{-}=J_{1\, -}+J_{2\, -} erhält man die Zustände |j_{1}+j_{2},j_{1}+j_{2}-1,j_{1},j_{2}\rangle bis |j_{1}+j_{2},-j_{1}-j_{2},j_{1},j_{2}\rangle, also zu J = j1 + j2 alle Zustände mit M = − J,...,J = − j1j2,...,j1 + j2.

Den Zustand |j_{1}+j_{2}-1,j_{1}+j_{2}-1,j_{1},j_{2}\rangle erhält man aus der Forderung nach Orthogonalität zu |j_{1}+j_{2},j_{1}+j_{2}-1,j_{1},j_{2}\rangle und der Konvention, dass der Clebsch-Gordan-Koeffizient für M = J positiv ist.

Mit dem Absteigeoperator können zu J = j1 + j2 − 1 wieder alle Zustände mit M = − j1j2 + 1,...,j1 + j2 − 1 erzeugt werden. Dieses Verfahren wird nun iterativ wiederholt bis J = | j1j2 | .

SU(N)-Clebsch-Gordan-Koeffizienten

Die Drehimpulsalgebra entspricht im mathematischen Sinne der Algebra su(2), der Lie-Algebra der speziellen unitären Gruppe. In der Quantenmechanik lassen sich nicht nur Zustände koppeln, die Drehimpulsquantenzahlen bzw. su(2)-Quantenzahlen tragen, sondern auch Zustände mit su(N)-Quantenzahlen. Dies passiert z.B. in der Quantenchromodynamik. Um die dabei auftretenden Clebsch-Gordan-Koeffizienten zu berechnen, sind inzwischen Algorithmen bekannt[1].

Weblinks

Literatur

  • Wachter, Hoeber: Repetitorium Theoretische Physik. Springer Verlag. ISBN 3540214577

Einzelnachweise

  1. A. Alex, M. Kalus, A. Huckleberry, and J. von Delft: A numerical algorithm for the explicit calculation of SU(N) and SL(N,C) Clebsch-Gordan coefficients. In: J. Math. Phys.. 82, Februar 2011, S. 023507. doi:10.1063/1.3521562. Abgerufen am 13. April 2011.

Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Clebsch-Gordan Koeffizient — Die Clebsch Gordan Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses… …   Deutsch Wikipedia

  • Clebsch-Gordan-Koeffizienten — Die Clebsch Gordan Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses… …   Deutsch Wikipedia

  • Clebsch-Gordan Koeffizienten — Die Clebsch Gordan Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses… …   Deutsch Wikipedia

  • Clebsch-Gordan coefficient — Klebšo ir Gordano koeficientas statusas T sritis fizika atitikmenys: angl. Clebsch Gordan coefficient vok. Klebsch Gordan Koeffizient, m rus. коэффициент Клебша Гордана, m pranc. coefficient de Clebsch Gordan, m …   Fizikos terminų žodynas

  • Klebsch-Gordan Koeffizient — Klebšo ir Gordano koeficientas statusas T sritis fizika atitikmenys: angl. Clebsch Gordan coefficient vok. Klebsch Gordan Koeffizient, m rus. коэффициент Клебша Гордана, m pranc. coefficient de Clebsch Gordan, m …   Fizikos terminų žodynas

  • coefficient de Clebsch-Gordan — Klebšo ir Gordano koeficientas statusas T sritis fizika atitikmenys: angl. Clebsch Gordan coefficient vok. Klebsch Gordan Koeffizient, m rus. коэффициент Клебша Гордана, m pranc. coefficient de Clebsch Gordan, m …   Fizikos terminų žodynas

  • Clebsch — bezeichnet: Alfred Clebsch (1833 1872), deutscher Mathematiker Clebsch Gordan Koeffizient Clebsch Graph Diese Seite ist eine Begriffsklärung zur Unterscheidung mehrerer mit demselben Wort bezeic …   Deutsch Wikipedia

  • Clebsch-Gordon-Koeffizienten — Die Clebsch Gordan Koeffizienten finden ihre Verwendung in der Kopplung quantenmechanischer Drehimpulse. Es handelt sich dabei um Entwicklungskoeffizienten, mit denen man aus der Basis der Einzeldrehimpulse in die Basis des Gesamtdrehimpulses… …   Deutsch Wikipedia

  • Koeffizient — Diese Seite wird derzeit im Sinne der Richtlinien für Begriffsklärungen auf der Diskussionsseite des Wikiprojektes Begriffsklärungen diskutiert. Hilf mit, die Mängel zu beseitigen, und beteilige dich an der Diskussion! Hinweise zur Überarbeitung …   Deutsch Wikipedia

  • Paul Albert Gordan — Paul Albert Gordan, 1837–1912 Paul Albert Gordan (* 27. April 1837 in Breslau; † 21. Dezember 1912 in Erlangen) war ein deutscher Mathematiker. Er ist bekannt als „König der Invariantentheorie“. Gordan arbeitete zunächst in Breslau, Genf und… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”