Fermentativ

Fermentativ

Mit Energiestoffwechsel bezeichnet man den Teil des Stoffwechsels von Lebewesen, der der Gewinnung von Energie für energieverbrauchende Prozesse dient. Er unterscheidet sich vom energieverbrauchenden Baustoffwechsel (Anabolismus), der dem Aufbau von Körperbestandteilen der Lebewesen dient.

Die Verbindung zwischen energieverbrauchenden und energiegewinnenden Prozessen bezeichnet man als Energiekopplung.

Der Energiestoffwechsel besteht aus chemischen Stoffumsetzungen, die in der Summe exergon, also energieliefernd sind. Es werden also Stoffsysteme genutzt, die sich in einem thermodynamischen Ungleichgewicht befinden und bei ihrer Umsetzung in einen energieärmeren, stabileren Gleichgewichtszustand überführt werden.

Die Energiegewinnung durch einen Energiestoffwechsel bezeichnet man als Chemotrophie. Ein Gegensatz ist die Nutzung von Licht als Energiequelle (Phototrophie). Auch die meisten phototrophen Lebewesen können alternativ chemotroph Energie gewinnen, zum Beispiel bei Lichtmangel.

Inhaltsverzeichnis

Speicherung und Transport der Energie

Chemotrophe Lebewesen nutzen die bei den exergonen Stoffumsetzungen frei werdende Energie. Sie speichern sie kurzzeitig, indem sie unter deren Verbrauch energiereiche Stoffe synthetisieren, aus denen bei Umkehrung der Synthese die Energie leicht wieder freigesetzt werden kann. Dazu eignen sich Nucleosid-Phosphate, da durch Abspaltung ihrer Phosphatreste Energie frei wird und durch Energieaufwand Phosphatreste wieder daran gebunden werden können (Näheres siehe unter Adenosintriphosphat). Mit Nucleosid-Phosphaten kann auf diese Weise Energie gespeichert und auch transportiert werden. Die bei Lebewesen wichtigsten energiespeichernden Nucleosid-Phosphate sind die Tri- und Diphosphate von Adenosin und Guanosin (Kurzbezeichnungen ATP, ADP, GTP bzw. GDP).

Betrag der Energie

Die bei den Stoffumsetzungen frei werdende Energie ist die durch die Umsetzung verursachte Änderung von Gibbs Freier Energie, also die Differenz zwischen den Energiegehalten der umgesetzten Stoffe (der Edukte) und denen der daraus gebildeten Stoffe (der Produkte). Sie ist abhängig von der umgesetzten Menge, vom Energieinhalt und von der Konzentration der an der Stoffumsetzung beteiligten Stoffe (der Reaktanten), von der Temperatur und vom Druck. Als Energiegehalt der Stoffe wird jeweils diejenige Energie definiert, die zu Bildung dieser Stoffe aus chemischen Elementen erforderlich ist. Diese Energiegehalte sind in Tabellen aufgeführt (zum Beispiel die Tabelle von Thauer, Jungermann und Decker, 1977).

Oft ist die Konzentration der Reaktanten nicht bekannt und sie ändert sich im Verlauf der Umsetzung. In diesen Fällen kann die Änderung der Freien Energie nicht bzw. nur schwer berechnet werden. Einen Anhaltspunkt für die bei einer Stoffumsetzung frei werdende Energie erhält man aber, indem man die Änderung der Freien Energie unter Standardbedingungen (mit ΔG0 bezeichnet) berechnet. Als Standardbedingungen wurden vereinbart: Temperatur 25 °C, Druck 1,013 bar, Konzentration der an der Umsetzung beteiligten Stoffe (Reaktanten) 1 mol/L mit Ausnahme der von Wasser, für die 55,6 mol/L (reines Wasser) vereinbart ist, und der von Gasen, für die eine Konzentration im Lösungsgleichgewicht mit einem Partialdruck von 1 bar in der Gasphase vereinbart ist. Bei biologischen Systemen wird allerdings für die H+-Ionen-Konzentration nicht die von Lebewesen in der Regel nicht tolerierte Konzentration 1 mol/L entsprechend pH 0, sondern 10−7 mol/L entsprechend pH 7 vereinbart und man bezeichnet den Wert der Änderung der Freien Energie unter diesen Bedingungen als ΔG0’.

Weichen die tatsächlichen Bedingungen von diesen Standardbedingungen ab, so ist auch der Betrag der Änderung der Freien Energie ein anderer, er kann erheblich vom Standardwert abweichen. In lebenden Systemen sind Standardbedingungen in der Regel nicht gegeben und ändern sich oft auch während der Stoffumsetzung. Der Betrag der Änderung der Freien Energie unter Standardbedingungen bietet also bei Lebewesen lediglich einen Anhaltspunkt für die bei einer chemischen Stoffumsetzung frei werdende Energie.

Entsprechend dem Dritten Hauptsatz der Thermodynamik wird bei allen Energieumwandlungen ein Teil der Energie in Wärme umgewandelt. Dementsprechend kann auch von Lebewesen nur ein Teil der beim Energiestoffwechsel frei werdenden Energie für andere Zwecke als zur Wärmebildung genutzt werden.

Arten des Energiestoffwechsels

Man unterscheidet fermentativen und oxidativen Energiestoffwechsel.

Ein fermentativer Energiestoffwechsel lässt in der Bruttoumsetzung keine Redoxreaktionen erkennen. Beispiele für fermentativen Energiestoffwechsel:

C12H22O11 + H2O4 C3H5O3 + 4 H+
ΔG0' = 478 kJ je Mol Lactose

Bei oxidativem Energiestoffwechsel (oxidative Phosphorylierung, Zellatmung) sind auch im Bruttoumsatz Redoxreaktionen am Verbrauch eines Oxidationsmittels und eines Reduktionsmittels zu erkennen. Beispiele für oxidativen Energiestoffwechsel:

C6H12O6 + 6 O26 CO2 + 6 H2O
ΔG0' = 2822 kJ je Mol Glucose
  • Umsetzung von Kohlenstoffdioxid (CO2) (=Oxidationsmittel) und molekularem Wasserstoff (H2) (=Reduktionsmittel) zu Methan (CH4) und Wasser (H2O) in methanogenen Archaea:
CO2 + 4 H2CH4 + 2 H2O
ΔG0' = 139 kJ je Mol Kohlenstoffdioxid
SO42− + 4 H2HS + 3 H2O + OH
ΔG0' = 112 kJ je Mol Sulfat
2NO3 + 12 H+ + 10 eN2 + 6 H2O

Literatur

  • Albert L. Lehninger, David L. Nelson, Michael M. Cox: Prinzipien der Biochemie. 2. Auflage. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford 1998, ISBN 3-8274-0325-1
  • Jeremy M. Berg, John L. Tymoczko, Lubert Stryer: Biochemie. 6. Auflage. Elsevier Spektrum Akademischer Verlag GmbH, Heidelberg 2007, ISBN 978-3-8274-1800-5
  • Rudolf K. Thauer, Kurt Jungermann, Karl Decker: Energy conservation in chemotrophic anaerobic bacteria. In: Bacteriological Reviews. Bd. 41, Nr. 1, 1977, S. 100 - 180.

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужно сделать НИР?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • fermentativ — FERMENTATÍV, Ă, fermentativi, e, adj. Care poate fermenta sau produce o fermentaţie. – Din fr. fermentatif. Trimis de LauraGellner, 13.09.2007. Sursa: DEX 98  fermentatív adj. m., pl. fermentatívi; f. sg. fermentatívă …   Dicționar Român

  • fermentativ — [...ti̱f]: durch Fermente bedingt, hervorgerufen …   Das Wörterbuch medizinischer Fachausdrücke

  • fermentativ — fer|men|ta|tiv <Adj.>: durch Enzyme hervorgerufen: ein er Abbau. * * * fer|men|ta|tiv <Adj.>: durch Enzyme hervorgerufen: ein er Abbau; Karotin ist die Vorstufe des Vitamins A, das in unserer Leber durch e Vorgänge in Vitamin A… …   Universal-Lexikon

  • fermentativ — fer|men|ta|tiv 〈Adj.〉 1. von Fermenten bewirkt 2. auf Fermentation beruhend …   Lexikalische Deutsches Wörterbuch

  • fermentativ — fer|men|ta|tiv <zu ↑...iv>: 1. (veraltet) svw. ↑enzymatisch. 2. durch Fermente (2) hervorgerufen …   Das große Fremdwörterbuch

  • fermentativ — fer|men|ta|tiv (durch Ferment hervorgerufen) …   Die deutsche Rechtschreibung

  • Stärkepolymer — Als Stärkepolymere werden grundsätzlich alle Polymere bezeichnet, die auf das natürlich vorkommende Polysaccharid Stärke aufbauen. Während im Umfeld der biologisch chemischen Forschung auch das Polymer der Stärke selbst als Stärkepolymer… …   Deutsch Wikipedia

  • Industrielle Biotechnologie — Bei vielen biotechnologischen Anwendungen kommen Fermenter verschiedener Ausführung zum Einsatz, wie zum Beispiel diese Gärbottiche zur Bierherstellung Die Weiße Biotechnologie, auch Industrielle Biotechnologie genannt, ist der Bereich der… …   Deutsch Wikipedia

  • PHF — Biosynthese von PHB durch Bakterien Polyhydroxyalkanoate (PHA; Polyhydroxyfettsäuren) oder Polyhydroxyfettsäuren (PHF) sind natürlich vorkommende wasserunlösliche und lineare Polyester, die von vielen Bakterien als Reservestoffe für Kohlenstoff… …   Deutsch Wikipedia

  • Polyhydroxyalkanoate — Biosynthese von PHB durch Bakterien Polyhydroxyalkanoate (PHA; Polyhydroxyfettsäuren) oder Polyhydroxyfettsäuren (PHF) sind natürlich vorkommende wasserunlösliche und lineare Polyester, die von vielen Bakterien als Reservestoffe für Kohlenstoff… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://de-academic.com/dic.nsf/dewiki/436854 Do a right-click on the link above
and select “Copy Link”