Finales Objekt

Finales Objekt

Anfangsobjekt, Endobjekt und Nullobjekt sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie.

Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt.

Ein Anfangsobjekt ist ein spezieller Fall des Koprodukts, ein Endobjekt ein spezieller Fall des Produkts in Kategorien.

Inhaltsverzeichnis

Definitionen

  • Ein Objekt X heißt Anfangsobjekt, wenn Mor(X,Y) für jedes Objekt Y aus genau einem Element besteht, es also einen eindeutigen Morphismus X \to Y gibt.
  • Ein Objekt X heißt Endobjekt, wenn Mor(Y,X) für jedes Objekt Y aus genau einem Element besteht, es also einen eindeutigen Morphismus Y \to X gibt.
  • Ein Objekt heißt Nullobjekt, wenn es gleichzeitig Anfangs- und Endobjekt ist.

Eigenschaften

  • Je zwei Anfangsobjekte sind isomorph.
  • Je zwei Endobjekte sind isomorph.
  • Je zwei Nullobjekte sind isomorph.
  • Ist ein Anfangsobjekt zu einem Endobjekt isomorph, dann handelt es sich um ein Nullobjekt.

Die in all diesen Fällen auftretenden Isomorphismen sind jeweils eindeutig bestimmt. Zusammenfassend bedeutet dies:

Anfangs-, End- und Nullobjekte sind (soferne sie existieren) jeweils eindeutig bis auf eindeutigen Isomorphismus.

  • Das Anfangsobjekt ist ein Sonderfall des Koprodukts, nämlich für die leere Familie von Objekten.
  • Das Endobjekt ist ein Sonderfall des Produkts, nämlich für die leere Familie von Objekten.

Beispiele

  • In der Kategorie der Mengen ist die leere Menge das Anfangsobjekt, jede einelementige Menge (Singleton) ist ein Endobjekt.
  • In der Kategorie der Gruppen oder der abelschen Gruppen ist die triviale Gruppe (die nur aus dem neutralen Element besteht) Nullobjekt.
  • In der Kategorie der nichtleeren Halbgruppen gibt es kein Anfangsobjekt. Lässt man die leere Halbgruppe zu, so ist diese das Anfangsobjekt. In beiden Fällen ist jede einelementige Halbgruppe Endobjekt.
  • In der Kategorie der Vektorräume über einem Körper (oder allgemeiner der Moduln über einem Ring) ist der Nullvektorraum (bzw. der Nullmodul) Nullobjekt.
  • In der Kategorie der kommutativen Ringe mit Einselement ist der Ring Z der ganzen Zahlen Anfangsobjekt und der Nullring Endobjekt.
  • In der Kategorie beliebiger Ringe ist der Nullring Nullobjekt.
  • In der Kategorie der punktierten topologischen Räume sind die einpunktigen Räume Nullobjekte.
  • Man kann jede partielle Ordnung als Kategorie auffassen indem man festlegt, dass genau dann ein Pfeil von x nach y geht, wenn x \le y gilt. Ein Anfangsobjekt entspricht dann dem kleinsten Element der Ordnung (falls es existiert). Ein Endobjekt entspricht dem größten Element.

Kategorien mit Nullobjekten

Gibt es in einer Kategorie ein Nullobjekt 0, so gibt es zu je zwei Objekten X und Y stets einen kanonischen so genannten Nullmorphismus 0 : X \to Y, der die Verkettung von

X \to 0 \to Y

ist. In Kategorien mit Nullobjekten gibt es also den Begriff des Kerns eines Morphismus f, definiert als Differenzkern des Paares (f,0).

Nullmorphismen erlauben auch die Konstruktion eines kanonischen Pfeils aus einem Koprodukt in das entsprechende Produkt.


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Initiales Objekt — Anfangsobjekt, Endobjekt und Nullobjekt sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie. Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt.… …   Deutsch Wikipedia

  • Terminales Objekt — Anfangsobjekt, Endobjekt und Nullobjekt sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie. Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt.… …   Deutsch Wikipedia

  • Kategorientheorie — Die Kategorientheorie oder die kategorielle Algebra ist ein Zweig der Mathematik, der Anfang der 1940er Jahre zuerst im Rahmen der Topologie entwickelt wurde; Saunders MacLane nennt seine 1945 in Zusammenarbeit mit Samuel Eilenberg entstandene… …   Deutsch Wikipedia

  • Anfangsobjekt — Anfangsobjekt, Endobjekt und Nullobjekt sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie. Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt.… …   Deutsch Wikipedia

  • Anfangsobjekt, Endobjekt und Nullobjekt — sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie. Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt. Ein Anfangsobjekt ist ein spezieller Fall… …   Deutsch Wikipedia

  • Endobjekt — Anfangsobjekt, Endobjekt und Nullobjekt sind Begriffe aus dem mathematischen Teilgebiet der Kategorientheorie. Die folgenden Bezeichnungen sind ebenfalls üblich: initiales Objekt für Anfangsobjekt, terminales oder finales Objekt für Endobjekt.… …   Deutsch Wikipedia

  • Final — Finale (lat. finis ‚Ende‘) bezeichnet: in der Kunst allgemein den Schlussteil, siehe Satz (Musikstück), Akt (Theater), Finale (Oper) im Sport ein Endspiel, siehe Finale (Sport) ein Notensatzprogramm, siehe Finale (Programm) eine Buchserie von Tim …   Deutsch Wikipedia

  • Ainu-Sprache — Ainu (アイヌ イタク, Aynu itak) Gesprochen in Japan, früher auch Russland Sprecher 15 Linguistische Klassifikation Isolierte Sprache …   Deutsch Wikipedia

  • Ainu (Sprache) — Ainu (アイヌ イタク, Aynu itak) Gesprochen in Japan, früher auch Russland Sprecher 15 Linguistische Klassifikation Iso …   Deutsch Wikipedia

  • Electronic Product Code — Der Elektronische Produktcode (EPC), in Zusammenarbeit zwischen den Auto ID Labs und EPCglobal entwickelt, ermöglicht eine eindeutige Kennzeichnung von Objekten (z. B. Handelseinheiten, logistische Einheiten oder Transportbehälter). Dafür wird… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”