- Glycerinaldehyd-3-Phosphat
-
Strukturformel Allgemeines Name Glycerinaldehyd Andere Namen - Glyceraldehyd
- 2,3-Dihydroxypropanal
- Glyceral
Summenformel C3H6O3 CAS-Nummer - 367-47-5
- 56-82-6 (DL-Glycerinaldehyd)
- 453-17-8 (D-(+)-Glycerinaldehyd)
Kurzbeschreibung farbloses Pulver Eigenschaften Molare Masse 90,08 g·mol−1 Aggregatzustand fest
Dichte 1,455 g·cm–3
Schmelzpunkt Siedepunkt 140–150 °C (0,8 mmHg)[1]
Löslichkeit Sicherheitshinweise Gefahrstoffkennzeichnung aus RL 67/548/EWG, Anh. I [2] keine Gefahrensymbole R- und S-Sätze R: keine R-Sätze S: keine S-Sätze Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Glycerinaldehyd ist eine süß schmeckende, chemische Verbindung, die in wasserfreiem Zustand einen kristallinen Feststoff bildet. Es gehört zur Stoffgruppe der Zucker, und innerhalb dieser, zur Untergruppe der Triosen. Da es ein Chiralitätszentrum enthält, gibt es zwei Enantiomere. Bezüglich des molekularen Baus handelt es sich um den einfachsten denkbaren Einfachzucker. Die physiologische Bedeutung der Verbindung ist sehr groß, da es sich um einen Grundstoff des Stoffwechsels handelt, aus denen die Zelle sehr viele weitere Stoffe zu bilden vermag. Glycerinaldehyd besitzt mit C3H6O3 dieselbe Summenformel wie das isomere Dihydroxyaceton.
Inhaltsverzeichnis
Vorkommen und biologische Bedeutung
Glycerinaldehyd und sein Derivat, das Glycerinaldehyd-3-Phosphat, sind ubiquitär verbreitet, da da es sich um Schlüsselstoffe des Zellstoffwechsels handelt. So ist Glycerinaldehyd-3-Phosphat ein Zwischenprodukt der Abbauwege für Glucose in der Zelle, der Glykolyse (siehe auch Glycerinaldehyd-3-phosphat-Dehydrogenase) und auch des Entner-Doudoroff-Wegs. Aber auch die Neubildung von Glucose aus Pyruvat, die Gluconeogenese, verläuft über die Zwischenstufe des Glycerinaldehyd-3-Phosphats. Zudem ist es ein Zwischenprodukt des Calvin-Zyklus der Photosynthese.
Molekülbau und optische Eigenschaften
Glycerinaldehyd ist eine optisch aktive Verbindung mit einem Chiralitätszentrum am mittleren C-Atom. Je nach räumlicher Anordnung der Substituenten an diesem Chiralitätszentrum existieren zwei Verbindungen, deren Moleküle sich untereinander wie Bild und Spiegelbild verhalten. Die beiden Enantionmere werden, wie bei Zuckern üblich, entsprechend der Fischer-Projektion meist als D-Glycerinaldehyd und L-Glycerinaldehyd bezeichnet. Mit der Cahn-Ingold-Prelog-Konvention erhält man die Bezeichnungen (R)-Glycerinaldehyd bzw. (S)-Glycerinaldehyd. L-Glycerinaldehyd dreht linear polarisiertes Licht nach links, D-Glycerinaldehyd hingegen nach rechts.
Strukturformeln des Glycerinaldehyds L-Glycerinaldehyd D-Glycerinaldehyd Fischer-Projektion Keilstrichformeln Besonderer historischer Stellenwert in der Stereochemie
Glycerinaldehyd kommt in der Wissenschaftsgeschichte eine besondere Rolle zu, da mit einer Vereinbarung die diese Verbindung betraf, auch die Konfiguration (also die räumliche Anordnung der Substituenten) anderer chiraler Moleküle angegeben werden konnte.
Ohne die tatsächliche räumliche Anordnung der Hydroxylgruppen am Glycerinaldehyd zu kennen, wurde folgendes vereinbart: Dasjenige Glycerinaldehyd-Enantiomer, das linear polarisiertes Licht nach rechts dreht bekam die Konfiguration D zugeordnet (D steht für dexter, lat. für rechts. Demnach wurde angenommen, dass die Hydroxylgruppe am Chiralitätszentrum in der Fischer-Projektion nach rechts zeigt. (Näheres: siehe Fischer-Projektion). Das Glycerinaldehyd-Enantiomer, das linear polarisertes Licht nach links dreht, bekam willkürlich die Konfiguration L zugeschrieben. Man hätte die Zuordnung auch anders herum wählen können, denn absolute Konfiguration und die Drehrichtung können genauso gut voneinander abweichen (Beispiel: L-Milchsäure dreht linear polarisiertes Licht nach rechts.)
Mit dieser Vereinbarung konnte die Konfiguration anderer chiraler Moleküle angegeben werden: Man überführte die zu prüfende Verbindung (z. B. Milchsäure) durch chemische Reaktionen in Glycerinaldehyd, ohne dabei die Konfiguration am Chiralitätszentrum zu verändern. Drehte die so entstandene Verbindung linear polarisiertes Licht nach links, so wusste man, dass es sich laut Konvention um L-Glycerinaldehyd handelt. Daraus konnte man schlussfolgern, dass auch die Ausgangsverbindung die L-Konfiguration besaß, da die chemischen Reaktionen unter Erhalt der Konfiguration durchgeführt wurde (z. B. L-Milchsäure).
Erst nach Einführung der Röntgenstrukturanalyse konnte die tatsächliche Konfiguration experimentell überprüft werden. Es zeigte sich, dass die Zuordnung (linksdrehendes Glycerinaldehyd → L-Konfiguration, rechtsdrehendes Glycerinaldehyd → D-Konfiguration) zufälligerweise richtig gewählt wurde.
Chemische Eigenschaften
Durch geeignete Oxidationsmittel kann die Aldehyd-Gruppe (–CHO) zur Carboxyl-Gruppe (–COOH) oxidiert werden. Dabei geht die Verbindung in Glycerinsäure über.
Glycerinaldehyd isomerisiert basenkatalysiert in der Lobry-de-Bruyn-Alberda-van-Ekenstein-Umlagerung sowohl zu Dihydroxyaceton als auch zu von der D-Form in die L-Form. Es liegt also Gleichgewichtsreaktion zwischen D- und L-Glycerinaldehyd und dem nicht-chiralen Dihydroxyaceton vor. In folgender Abbildung steht der Rest –R für die Gruppe –CH2–OH:
Entsprechend steht auch Glycerinaldehyd-3-phosphat mit Dihydroxyacetonphosphat im Gleichgewicht. In der Zelle werden die Gleichgewichtseinstellungen durch bestimmte Enzyme katalysiert.
Nachweis
Die Aldehydgruppe des Glycerinaldehyds lässt sich durch die Fehling-Probe, die Tollensprobe oder durch die Schiffsche Probe nachweisen.
Quellen
- ↑ a b c The Merck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals. 14. Auflage, 2006, S. 774, ISBN 978-0-911910-00-1.
- ↑ Eintrag zu CAS-Nr. 367-47-5 im European chemical Substances Information System ESIS
Wikimedia Foundation.