Gruppenisomorphismus

Gruppenisomorphismus

Ein Gruppenisomorphismus bezeichnet in der Gruppentheorie einen bijektiven Gruppenhomomorphismus f\colon G\to H zwischen zwei Gruppen \left(G,\circ\right) und \left(H,\star\right).

Ist in obiger Definition \left(G,\circ\right) = \left(H,\star\right), so nennt man f auch einen Gruppenautomorphismus.

Anwendungen finden Gruppenisomorphismen zum Beispiel in den Isomorphiesätzen.

Inhaltsverzeichnis

Eigenschaften

Kern\left(f\right)=\left\{e_G\right\}
  • Sein Bild ist die ganze Gruppe, d.h.:
Bild\left(f\right)=H
  • Zu jedem Gruppenisomorphismus f\colon G\to H existiert eine eindeutig bestimmte Umkehrfunktion f^{-1}\colon H\to G.

Isomorphie von Gruppen

Gruppen, zwischen denen ein solcher Gruppenisomorphismus existiert, nennt man isomorph zueinander: sie unterscheiden sich nur in der Bezeichnung ihrer Elemente und stimmen für fast alle Zwecke überein.

Es lässt sich leicht zeigen, dass die Isomorphie von Gruppen eine Äquivalenzrelation bildet.

Beispiele

Siehe auch


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Gruppenhomomorphismus — In der Gruppentheorie betrachtet man spezielle Abbildungen zwischen Gruppen, die man Gruppenhomomorphismen nennt. Ein Gruppenhomomorphismus ist eine strukturerhaltende Abbildung zwischen Gruppen, und damit ein spezieller Homomorphismus.… …   Deutsch Wikipedia

  • Homomorphiesatz — Der Homomorphiesatz ist ein mathematischer Satz aus dem Gebiet der Algebra, der in entsprechender Form für Abbildungen zwischen Gruppen, Vektorräumen und Ringen gilt. Er stellt jeweils einen engen Zusammenhang zwischen Gruppenhomomorphismen und… …   Deutsch Wikipedia

  • Diskreter-Logarithmus-Problem — In der Gruppentheorie ist der diskrete Logarithmus das Analogon zum gewöhnlichen Logarithmus aus der Analysis; diskret kann in diesem Zusammenhang etwa wie ganzzahlig verstanden werden. Die diskrete Exponentiation in einer zyklischen Gruppe… …   Deutsch Wikipedia

  • Diskreter Logarithmus — In der Gruppentheorie ist der diskrete Logarithmus das Analogon zum gewöhnlichen Logarithmus aus der Analysis; diskret kann in diesem Zusammenhang etwa wie ganzzahlig verstanden werden. Die diskrete Exponentiation in einer zyklischen Gruppe… …   Deutsch Wikipedia

  • Freie Gruppe — In der Mathematik heißt eine Gruppe frei, wenn sie eine Teilmenge S enthält, so dass jedes Gruppenelement auf genau eine Weise als (reduziertes) Wort von Elementen in S und deren Inversen geschrieben werden kann. Hierbei ist die Reihenfolge der… …   Deutsch Wikipedia

  • Freie abelsche Gruppe — In der Mathematik ist eine freie abelsche Gruppe eine abelsche Gruppe, die eine Basis hat. Das bedeutet, dass jedes Element der Gruppe auf genau eine Weise als Linearkombination von Elementen der Basis mit ganzzahligen Koeffizienten geschrieben… …   Deutsch Wikipedia

  • Gruppenautomorphismus — In der Gruppentheorie betrachtet man spezielle Abbildungen zwischen Gruppen, die man Gruppenhomomorphismen nennt. Ein Gruppenhomomorphismus ist eine strukturerhaltende Abbildung zwischen Gruppen, und damit ein spezieller Homomorphismus.… …   Deutsch Wikipedia

  • Isomorph — In der Mathematik ist ein Isomorphismus eine Abbildung zwischen zwei mathematischen Strukturen, durch die Teile einer Struktur auf „bedeutungsgleiche“ Teile einer anderen Struktur umkehrbar eindeutig (bijektiv) abgebildet werden.… …   Deutsch Wikipedia

  • Isomorphe Gruppe — In der Mathematik ist ein Isomorphismus eine Abbildung zwischen zwei mathematischen Strukturen, durch die Teile einer Struktur auf „bedeutungsgleiche“ Teile einer anderen Struktur umkehrbar eindeutig (bijektiv) abgebildet werden.… …   Deutsch Wikipedia

  • Isomorphie (Mathematik) — In der Mathematik ist ein Isomorphismus eine Abbildung zwischen zwei mathematischen Strukturen, durch die Teile einer Struktur auf „bedeutungsgleiche“ Teile einer anderen Struktur umkehrbar eindeutig (bijektiv) abgebildet werden.… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”