Impedanzspektroskopie

Impedanzspektroskopie
Beispielhaftes Spektrum der dielektrischen Leitfähigkeit über ein breites Frequenzspektrum. Der Real- und Imaginärteil der Permittivität über die Frequenz, sowie verschiedene bandspezifische chemisch-physikalische Prozesse.

Die Dielektrische Spektroskopie (auch Impedanzspektroskopie) erfasst die dielektrischen Eigenschaften eines Mediums als Funktion der Frequenz.[1][2][3][4]. Sie basiert auf dem Zusammenspiel eines externen elektrischen Feldes mit dem Dipolmoment des untersuchten Mediums, welches durch die Dielektrizitätskonstante des Mediums angegeben wird.

Inhaltsverzeichnis

Dielektrische Mechanismen

Es gibt verschiedene unterschiedliche dielektrische Mechanismen je nach der Art, in welcher das untersuchte Medium auf das angelegte Feld reagiert. Jeder dieser Mechanismen ist mit einer charakteristischen Frequenz verbunden, welche den Kehrwert der charakteristischen Zeit des Prozesses darstellt. Bei hohen Frequenzen startend, sind die wichtigsten Mechanismen die folgenden:

Elektronische Polarisation

Auch als elektronische Verschiebungspolarisation bezeichnet. Diese Reaktion findet bei neutralen Atomen statt, wenn das angelegte elektrische Feld die Elektronendichte um den Atomkern verändert. Abbildung 2 zeigt schematisch einen Atomkern samt Elektronenhülle in Abwesenheit eines Feldes. In Abbildung 3 ist der Zustand zu sehen, bei dem ein Gleichgewicht zwischen den Kernbindungskräften und denen des elektrischen Feldes herrscht.

Atomare Polarisation

Atomare Polarisation findet statt, wenn die Elektronenwolken unter Einwirkung der Kräfte des angelegten elektrischen Feldes deformiert werden, sodass positive und negative Ladungszonen entstehen. Dabei handelt es sich um einen Resonanzprozess.

Orientierungspolarisation

Dieser Effekt hat seinen Ursprung in permanenten und induzierten Dipolen, welche im elektrischen Feld ausgerichtet werden. Ihre Orientierungspolarisation wird durch thermisches Rauschen, welches nicht am elektrischen Feld ausgerichtet ist, gestört. Die Zeit, welche die Dipole zur Entspannung benötigen wird durch die örtliche Viskosität des Mediums bestimmt. Diese beiden Eigenschaften machen die Dipol-Entspannung in hohem Maße von der Temperatur und den chemischen Eigenschaften des Mediums abhängig. Abbildung 4 zeigt Dipole in Abwesenheit eines elektrischen Feldes. In Abbildung 5 sind ausgerichtete Dipole in Anwesenheit eines elektrischen Feldes abgebildet.

Ionische Verschiebungspolarisation

Die ionische Verschiebungspolarisation beinhaltet die Ionenleitfähigkeit und Grenzflächen- sowie Raumladungspolarisation. Die Ionenleitfähigkeit dominiert bei niedrigen Frequenzen und ist auf Systemverluste zurückzuführen. Grenzflächenpolarisation tritt auf, wenn Ladungsträger auf Grenzflächen in heterogenen Systemen treffen. Abbildung 6 zeigt ein Ionengitter in Abwesenheit eines elektrischen Feldes. Abbildung 7 stellt die ionische Verschiebungspolarisation in Anwesenheit eines elektrischen Feldes dar.

Dielektrische Entspannung

Die dielektrische Entspannung als ganzes ist das Ergebnis der Bewegung der Dipole (Dipol-Entspannung) und der Ladungsträger (ionische Entspannung) hervorgerufen durch ein angelegtes alternierendes Feld. Sie wird gewöhnlicher Weise in Frequenzbereichen von 100 Hz bis 10 GHz beobachtet. Entspannungsmechanismen sind im Vergleich zu resonanzelektronischen Übergängen oder Molekülbewegungen, welche üblicherweise in Frequenzen über 1 THz auftreten, relativ langsam.

Anwendungsgebiete

In vielen Bereichen, in denen die Untersuchung und Beurteilung von Material- oder Systemeigenschaften eine Rolle spielt, ist auch die dielektrische Spektroskopie von Bedeutung. Anwendungsgebiete können sein:

Elektrotechnik

Von technischer Relevanz ist die dielektrische Spektroskopie insbesondere bei der Beurteilung von Isolationsmaterialien. Diese können beispielsweise Kabelisolationen in der Hochfrequenz- oder Hochspannungstechnik, oder auch die Öl-Papier-Isolation in Transformatoren oder anderen Hochspannungsbetriebsmitteln sein.

Messung der dielektrischen Antwort

Abbildung 8: Prinzipieller Messaufbau bei der dielektrischen Spektroskopie

Bei der dielektrischen Spektroskopie kann die dielektrische Antwort eines Systems im Frequenzbereich durch Verwendung zweier verschiedener Methoden ermittelt werden. Eine Kombination dieser im folgenden beschriebenen Methoden ist möglich. Dies kann sinnvoll sein, um Vor- bzw. Nachteile der jeweiligen Methoden aufzuwiegen.

Frequenzbereichsspektroskopie (FDS)

Bei der Frequenzbereichsspektroskopie (im Englischen: Frequency Domain Spectroscopy - FDS) wird das zu untersuchende System einem Wechselfeld ausgesetzt. Die Systemantwort wird direkt im Frequenzbereich erfasst. Diese Methode eignet sich insbesondere bei hohen Frequenzen.

Polarisations- und Depolarisationsstrommessung (PDC)

Bei der PDC (Polarization Depolarization Current) wird das zu untersuchende System einen konstanten Feld ausgesetzt. Die Systemantwort wird aus den gemessenen Polarisationsströmen ermittelt. Diese werden dazu in den Frequenzbereich transformiert. Instbesondere bei niedrigen Frequenzen ist diese Methode von Vorteil.

Prinzipieller Messaufbau

Für beide Methoden wird derselbe prinzipielle Messaufbau verwendet. Hierbei wird in einem Dielektrikum durch eine Spannungsquelle ein Feld erzeugt, und mit einem Amperemeter der durch dieses Medium fließende Strom gemessen. Eine Guard-Elektrode dient dazu, Oberflächenstrome an der Messung vorbeizuleiten, so dass nur der Volumentstrom gemessen wird. Diese Anordnung ist in Abbildung 8 dargestellt. Das Untersuchungsobjekt (Dielektrikum) ist anwendungsabhängig.

Darstellung und Interpretation der Messergebnisse

Das Impedanzspektrum beschreibt die Übertragungsfunktion des Systems und kann als Bode-Diagramm oder als Nyquist-Diagramm dargestellt werden. Da hierbei hauptsächlich Kapazitäten und seltener Induktivitäten auftreten, wird die negative imaginäre Achse normalerweise nach oben aufgetragen. Sind typische Kurvenverläufe für bestimmte Zustände in einem System bekannt, so ist häufig bereits eine grafische Auswertung der Diagramme möglich.

Auswertung mittels Anpassung von Modellparametern

Reicht die grafische Interpretation des Impedanzspektrums (beispielsweise im Nyquist-Diagramm) nicht aus, so kann für eine weitergehende Analyse ein Ersatzschaltbild des zu untersuchenden Systems erstellt werden. Das Ersatzschaltbild bildet die für die Untersuchung relevanten vermuteten chemischen und physikalischen Prozesse ab. So kann beispielsweise ein Kondensator eine eventuell vorhandene elektrochemische Doppelschicht repräsentieren. Neben den in der Elektrotechnik üblichen Impedanzen (Widerstände, Kapazitäten und Induktivitäten) können noch andere elektrochemische Phänomene auftreten, die zum Beispiel durch Diffusionsprozesse verursacht werden. Um diese Phänomene im Modell abzubilden, werden zusätzliche Elemente wie die Warburg-Impedanz oder die Nernst-Impedanz genutzt.

Die Parameter des Ersatzschaltbildes können mit einem Fitting an die Messwerte angepasst werden. Für dieses Fitting existiert speziell auf die Fragestellungen der Impedanzspektroskopie zugeschnittenen Software, die die Parameter mit Verfahren der nichtlinearen Optimierung anpasst. Die Parameter des angepassten Modells beziehungsweise ihre Veränderung zwischen verschiedenen Betriebszuständen erlauben eine Interpretation über Zustände und Vorgänge im System.

Literatur

  • Siegmund Brandt, Hans D. Dahmen: Elektrodynamik: Eine Einführung in Experiment und Theorie. 3. Auflage. Springer, 1997, ISBN 3-540-61911-9. 

Referenzen

  1. Kremer F., Schonhals A., Luck W. Broadband Dielectric Spectroscopy. – Springer-Verlag, 2002.
  2. Sidorovich A. M., Dielectric Spectrum of Water. – Ukrainian Physical Journal, 1984, vol. 29, No 8, p. 1175-1181 (Russisch).
  3. Hippel A. R. Dielectrics and Waves. – N. Y.: John Willey & Sons, 1954.
  4. Volkov A. A., Prokhorov A. S., Broadband Dielectric Spectroscopy of Solids. – Radiophysics and Quantum Electronics, 2003, vol. 46, Issue 8, p. 657–665.

Siehe auch

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Dielektrische Spektroskopie — Beispielhaftes Spektrum der dielektrischen Leitfähigkeit über ein breites Frequenzspektrum. Der Realteil (rot) und Imaginärteil (blau) der Permittivität über die Frequenz, sowie verschiedene bandspezifische chemisch physikalische Prozesse. Die… …   Deutsch Wikipedia

  • EIS — ist die Abkürzung für: Elektrochemische Impedanzspektroskopie, siehe Impedanzspektroskopie Enterprise Information System, englisch für Betriebliches Informationssystem Executive Information System, siehe Führungsinformationssystem Europäisches… …   Deutsch Wikipedia

  • Absorptionsspektroskopie — Spektroskopie ist eine Gruppe von Beobachtungsverfahren, die anhand des Spektrums (Farbzerlegung) von Lichtquellen untersuchen, wie elektromagnetische Strahlung und Materie in Wechselwirkung stehen. Spiritusflamme und ihr Spektrum …   Deutsch Wikipedia

  • Autobatterie — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung …   Deutsch Wikipedia

  • Bodediagramm — Das Bode Diagramm (nach Hendrik Wade Bode) ist ein spezieller Funktionsgraph und besteht aus einem Graph für den Betrag (die Amplitudenverstärkung) und einem für das Argument (die Phasenverschiebung) einer komplexen Übertragungsfunktion. Bode… …   Deutsch Wikipedia

  • Bodenfeuchte — Ein Boden ist wassergesättigt, wenn der gesamte Porenraum des Bodens von Wasser ausgefüllt ist. Ein Teil dieses Wassers wird als Sickerwasser in tiefere Zonen verlagert, während ein anderer Anteil des Bodenwassers gegen die Schwerkraft gehalten… …   Deutsch Wikipedia

  • Elektrochemische Reaktion — Elektrochemische Dreielektrodenmessanordnung Elektrochemie bezeichnet mehrere verschiedene Teilgebiete innerhalb der Chemie. Sie ist zum einen eine Synthesemethode, präparative Elektrochemie oder Elektrolyse oder Elektrosynthese, zum anderen ist… …   Deutsch Wikipedia

  • Fahrzeugbatterie — Dieser Artikel oder Abschnitt bedarf einer Überarbeitung. Näheres ist auf der Diskussionsseite angegeben. Hilf mit, ihn zu verbessern, und entferne anschließend diese Markierung …   Deutsch Wikipedia

  • Frequenzantwort — Das Bode Diagramm (nach Hendrik Wade Bode) ist ein spezieller Funktionsgraph und besteht aus einem Graph für den Betrag (die Amplitudenverstärkung) und einem für das Argument (die Phasenverschiebung) einer komplexen Übertragungsfunktion. Bode… …   Deutsch Wikipedia

  • Impedanzen — Physikalische Größe Name Impedanz Formelzeichen der Größe Z Größen und Einheiten system Einheit Dimension SI …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”