Ionische Bindung

Ionische Bindung
Abschätzung des prozentualen Ionenbindungsanteils in Abhängigkeit von der Elektronegativitätsdifferenz

Die ionische Bindung (auch Ionenbindung, heteropolare Bindung oder elektrovalente Bindung) ist eine chemische Bindung, die auf der elektrostatischen Anziehung positiv und negativ geladener Ionen basiert.

Inhaltsverzeichnis

Beschreibung

Die Ionenbindung wurde um 1916 von Walter Kossel formuliert. Ab einer Elektronegativitäts-Differenz von ΔEN = 1,7 spricht man von einem 50 % partiell ionischen Charakter.[1] Bei einer Differenz größer als 1,7 liegen demnach ionische Bindungen, darunter polare, überwiegend kovalente Bindungen vor. Dies sind jedoch relativ willkürlich gesetzte Grenzen, da der Fall der reinen ionischen Bindung eine Idealisierung darstellt. Als grober Anhaltspunkt: Es kommt eine Ionenbindung zustande zwischen Elementen, die links im Periodensystem (PSE) stehen (also Metallen), und Elementen, die rechts im PSE stehen (Nichtmetallen). Schaut man sich den Ionenbindungsanteil zum Beispiel von Natriumchlorid an, welches oft als klassischer Fall der Ionenbindung angesehen wird, so stellt man einen Wert von etwa 75 Prozent fest. Ein anderes Beispiel wäre Cäsiumfluorid mit etwa 92 Prozent. Ionenbindungen haben also in allen Fällen auch einen Anteil an kovalenter Bindung. Umgekehrt gilt dies nicht, denn innerhalb sogenannter Elementmoleküle existiert die 100-prozentige kovalente Bindung.

Elektronenkonfiguration

Beispiel: Bildung von Natriumchlorid aus den Elementen

Die Atome streben durch Aufnahme oder Abgabe von Elektronen danach, für ihre äußerste besetzte Schale die Edelgaskonfiguration und den energieärmsten Zustand zu erreichen. Dies wird entweder durch Elektronenabgabe seitens der Elemente mit geringerer Elektronegativität erreicht (links im PSE), dabei entstehen einfach oder auch mehrfach positiv geladene Kationen, oder im anderen Fall durch Elektronenaufnahme seitens der Elemente mit höherer Elektronegativität und dadurch hoher Elektronenaffinität (im PSE rechts stehende Elemente), dabei entstehen einfach oder mehrfach negativ geladene Anionen.

Bildung des Ionengitters

Modell eines Calciumfluorid-Ionengitters

Die Kationen und Anionen ziehen sich elektrostatisch an; die bei der Vereinigung der beiden Ionenarten freiwerdende Energie wird als Gitterenergie bezeichnet und ist die eigentliche Triebkraft der Salzbildung. Die Gitterenergie setzt sich dabei aus insgesamt 4 Komponenten zusammen:

  • der Nullpunktenergie der Ionen,
  • den Abstoßungsenergien zwischen den Kernen einerseits und zwischen den Elektronenhüllen andererseits und
  • der Bindungsenergie, die aus London-Kräften zwischen mehr oder wenig gut polarisierbaren Elektronenhüllen oder aus Multipol-Wechselwirkungen (bei Ionen mit unsymmetrischer Ladungsverteilung wie NO2) resultiert und
  • schließlich der coulombschen Kraft zwischen den entgegengesetzt geladenen Ionen.

Die Gitterenergie lässt sich empirisch mit dem Born-Haber-Kreisprozess bestimmen.

Gittereigenschaften

Da sich das elektrostatische Feld gleichmäßig in alle Raumrichtungen erstreckt, entstehen sehr regelmäßige Ionengitter. Aufgrund der unterschiedlichen Ionenradien ergeben sich allerdings verschiedene ionische Strukturen: Kochsalz- (NaCl), Caesiumchlorid- (CsCl), Zinkblende- (ZnS) und Fluorit-Struktur (CaF2) sowie andere, die nach den charakteristischen Vertretern benannt sind. Die relativen Stabilitäten der verschiedenen Gittertypen infolge verschiedener Koordinationsgeometrien und Koordinationszahlen der Ionen werden durch die Madelung-Konstanten widergespiegelt; diese sind charakteristisch für die jeweilige Struktur.

Charakteristische Eigenschaften von Verbindungen mit Ionenbindung

  • hoher Schmelz- und Siedepunkt, da in Kristallen durch die ungerichteten Bindungskräfte ein relativ stabiler Verbund über den gesamten Kristall entsteht.
  • Stromleitend in der Schmelze oder in Lösung. Den Ladungstransport besorgen die Ionen. Sie werden an den Elektroden entladen, wodurch die Salze zersetzt werden (häufig in ihre Elemente). Daher nennt man Ionenleiter Leiter 2. Ordnung.
  • hart und spröde: Bei dem Versuch, einen Kristall plastisch zu verformen, zerspringt dieser im Normalfall, da im Kristall die gleich geladenen Ionen zueinander geschoben werden und die Bindung dadurch aufgelöst wird.
  • Kristallbildung als Feststoff
  • Ionenkristalle sind oft farblos, da die Valenzelektronen meist stark gebunden sind und nur durch Photonen höherer Energie als die des sichtbaren Lichtes angeregt werden können.
  • Salze dissoziieren in wässeriger Lösung in ihre entsprechenden Ionen; Ionenverbindungen sind also in Wasser löslich – allerdings in sehr unterschiedlichem Maß. So ist zum Beispiel Natriumchlorid sehr gut in Wasser löslich, Silberchlorid dagegen nahezu unlöslich.

Einzelnachweise

  1. Charles E. Mortimer, Ulrich Müller: Chemie. Das Basiswissen der Chemie. Mit Übungsaufgaben. 6. Auflage. Thieme Georg Verlag, 1996, ISBN 3-13-484306-4.

Weblinks


Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • chemische Bindung — Bindung * * * che|mi|sche Bịn|dung: in erster Linie Bez. für die in Molekülen u. Atomverbänden intramolekular wirksamen, den Zusammenhalt der ↑ Atome bewirkenden Hauptvalenzbindungen, bei denen man unterscheidet zwischen kovalenter (↑… …   Universal-Lexikon

  • Chemische Bindung — Die chemische Bindung ist ein physikalisch chemisches Phänomen, durch das zwei oder mehrere Atome oder Ionen fest zu chemischen Verbindungen aneinander gebunden sind. Dieses beruht darauf, dass es für die meisten Atome oder Ionen energetisch… …   Deutsch Wikipedia

  • Atomare Bindung — Die Atombindung (auch kovalente Bindung, Elektronenpaarbindung oder homöopolare Bindung) ist eine Form der chemischen Bindungen und ist als solche für den festen Zusammenhalt von Atomen in vielen chemischen Verbindungen verantwortlich.… …   Deutsch Wikipedia

  • Homöopolare Bindung — Die Atombindung (auch kovalente Bindung, Elektronenpaarbindung oder homöopolare Bindung) ist eine Form der chemischen Bindungen und ist als solche für den festen Zusammenhalt von Atomen in vielen chemischen Verbindungen verantwortlich.… …   Deutsch Wikipedia

  • Kovalente Bindung — Die Atombindung (auch kovalente Bindung, Elektronenpaarbindung oder homöopolare Bindung) ist eine Form der chemischen Bindungen und ist als solche für den festen Zusammenhalt von Atomen in vielen chemischen Verbindungen verantwortlich.… …   Deutsch Wikipedia

  • Heteropolare Bindung — Abschätzung des prozentualen Ionenbindungsanteils in Abhängigkeit von der Elektronegativitätsdifferenz Die ionische Bindung (auch Ionenbindung, heteropolare Bindung oder elektrovalente Bindung) ist eine chemische Bindung, die aus der… …   Deutsch Wikipedia

  • Metallische Bindung — Als metallische Bindung oder Metallbindung bezeichnet man die chemische Bindung, wie sie bei Metallen und in Legierungen vorliegt. Diese ist gekennzeichnet durch das Auftreten von frei beweglichen (delokalisierten) Elektronen im Metallgitter, die …   Deutsch Wikipedia

  • Polare Bindung — Polare Atombindungen sind chemische Bindungen, bei denen die beteiligten Atome infolge ihrer unterschiedlichen Elektronegativität Teilladungen tragen. Die Differenz ist jedoch nicht groß genug, dass eine reine Ionenbindung entsteht. Das Atom mit… …   Deutsch Wikipedia

  • Koordinative Bindung — Koodinative Bindung aus Ammoniak und Bortrifluorid Eine koordinative Bindung (auch dative Bindung oder Donator Akzeptor Bindung, wobei der Begriff dative Bindung veraltet ist)[1] ist ein Fachbegriff der Komplexchemie. Eine solche Bindung besteht …   Deutsch Wikipedia

  • Bindungsarten — Die chemische Bindung ist ein physikalisches Phänomen, durch das zwei oder mehrere Atome oder Ionen fest zu chemischen Verbindungen aneinander gebunden sind. Dieses beruht darauf, dass es für die meisten Atome oder Ionen energetisch günstiger ist …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”