Konvex-Kombination

Konvex-Kombination

Eine Linearkombination  x\, von endlich vielen Elementen  x_1, x_2, \dots , x_n einer Menge M ist die Summe von beliebigen Vielfachen dieser Elemente. Um die Vielfachen berechnen zu können, sind Faktoren zu wählen, mit denen die Elemente multipliziert werden. Diese Faktoren nennt man Koeffizienten der Linearkombination. Diese sind zum Beispiel reelle oder komplexe Zahlen.

Linearkombinationen von unendlich vielen Elementen betrachtet man nur unter der Voraussetzung, dass in Wirklichkeit nur endlich viele hiervon in der Summe verwendet werden.

Inhaltsverzeichnis

Allgemeine Form

Endlichdimensionaler (reeller oder komplexer) Vektorraum

 x = a_1 \cdot x_1 + a_2 \cdot x_2 + \dots + a_n \cdot x_n \qquad \quad \mathrm{mit}\quad a_i \in \mathbb{R} \quad \mathrm{oder} \quad a_i \in \mathbb{C} \quad \mathrm{und} \quad x_i \in \mathbb V \mathrm{= Vektorraum}

oder kürzer geschrieben:

x = \sum_{i=1}^{n} a_i x_i

Beliebiger Vektorraum

Sei K ein Körper und V ein K-Vektorraum. Ferner sei (x_i)_{i\in I} eine durch die Indexmenge I indizierte Familie von Vektoren x_i\in V. Hat man dann zu jedem i\in I einen Koeffizienten a_i\in K derart, dass fast alle Koeffizienten Null sind, so ist

x = \sum_{i\in I} a_ix_i

die zugehörige Linearkombination. Dass nur endlich viele Koeffizienten (und damit Summanden) von 0 verschieden sind, ist erforderlich, damit die Summe überhaupt definiert werden kann. Eine konvergente Reihe ist also im allgemeinen keine Linearkombination ihrer Summanden.

Linksmoduln

In einer noch weiter gehenden Verallgemeinerung ergibt der Begriff der Linearkombination bereits einen Sinn, wenn man Ringe statt Körpern und Linksmoduln statt Vektorräumen betrachtet.

Allgemeines

Um die Linearkombination aus Elementen einer Menge bilden zu können, muss definiert sein, wie Vielfache von ihnen berechnet und wie solche Vielfachen aufsummiert werden können. Dies ist beispielsweise bei Elementen eines Vektorraumes gegeben.

In einem Vektorraum ist die Linearkombination von Vektoren mit Koeffizienten aus dem Körper des Vektorraums wieder ein Element des Vektorraums. Lassen sich alle Elemente des Vektorraums als Linearkombination aus einer Menge M darstellen, ist M ein Erzeugendensystem des Vektorraums. Die Menge aller Linearkombinationen einer Menge von Vektoren wird lineare Hülle genannt.

Linearkombinationen, deren Koeffizienten nicht beliebige reelle oder komplexe Zahlen, sondern ganze Zahlen sind (man spricht dann auch von einer ganzzahligen Linearkombination), spielen beim erweiterten euklidischen Algorithmus eine zentrale Rolle; er liefert eine Darstellung des größten gemeinsamen Teilers zweier ganzer Zahlen a,b als Linearkombination von a und b:

\operatorname{ggT}(a,b)=s\cdot a+t\cdot b.

Spezialfälle

  • Sind die Koeffizienten ai der Linearkombination alle größer oder gleich null, so spricht man von einer konischen Linearkombination.
  • Sind die Koeffizienten der Linearkombination alle echt größer als null, so spricht man von einer Positivkombination.
  • Ist die Summe der Koeffizienten gleich 1, so handelt es sich um eine Affinkombination
  • Eine konische Affinkombination, bei der also die Koeffizienten größer oder gleich 0 sind und in der Summe 1 ergeben, heißt Konvexkombination, siehe auch Konvexe Hülle.

Wikimedia Foundation.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Anastigmat — Cooke Triplet als einfachster Anastigmat …   Deutsch Wikipedia

  • Nash-Gleichgewicht — John F. Nash auf einem Symposium zu Spieltheorie und experimenteller Wirtschaftsforschung an der Universität Köln, November 2006. Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der… …   Deutsch Wikipedia

  • Nash-Equilibrium — Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der mathematischen Spieltheorie. Es beschreibt in nicht kooperativen Spielen einen Zustand eines strategischen Gleichgewichts, von dem… …   Deutsch Wikipedia

  • Nash-Program — Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der mathematischen Spieltheorie. Es beschreibt in nicht kooperativen Spielen einen Zustand eines strategischen Gleichgewichts, von dem… …   Deutsch Wikipedia

  • Nash Equilibrium — Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der mathematischen Spieltheorie. Es beschreibt in nicht kooperativen Spielen einen Zustand eines strategischen Gleichgewichts, von dem… …   Deutsch Wikipedia

  • Nash Gleichgewicht — Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der mathematischen Spieltheorie. Es beschreibt in nicht kooperativen Spielen einen Zustand eines strategischen Gleichgewichts, von dem… …   Deutsch Wikipedia

  • Nashgleichgewicht — Das Nash Gleichgewicht, teils auch (wie im Englischen) Nash Equilibrium genannt, ist ein zentraler Begriff der mathematischen Spieltheorie. Es beschreibt in nicht kooperativen Spielen einen Zustand eines strategischen Gleichgewichts, von dem… …   Deutsch Wikipedia

  • Entoloma subgen. Entoloma — Entoloma Riesen Rötling (Entoloma sinnuatum) Systematik Klasse: Basidiomycetes (Ständerpilze) …   Deutsch Wikipedia

  • Linsen und Linsensysteme — Linsen und Linsensysteme. Hier ist den im Hauptbände enthaltenen Ausführungen das Folgende nachzutragen. Ueber den Zusammenhang der Brennpunkte, Hauptebenen und Hauptpunkte mit der Diakaustik (s.d., S. 165); es ist F H = f, F H = f. Die… …   Lexikon der gesamten Technik

  • Brille — Korrektionsbrille Eine Brille ist eine vor den Augen getragene Konstruktion, die in den überwiegenden Fällen als optisches Hilfsmittel Fehlsichtigkeiten und Stellungsfehler der Augen korrigiert und als solche Korrektionsbrille oder auch… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”