Menge aller Mengen

Menge aller Mengen

Die Allklasse bezeichnet die Klasse, die alle Elemente einer mathematischen Theorie enthält; in der Mengenlehre ist das die Klasse aller Mengen. Die Allklasse wird heute präzise definiert durch die Eigenschaft x = x, die alle Elemente erfüllen, also als die Klasse {x | x = x}.

Die Allklasse wurde schon von Georg Cantor als „System aller denkbaren Klassen“ gebildet. Er zeigte 1899 mit einem indirekten Beweis, dass die Allklasse keine Menge ist: Wäre nämlich die Allklasse eine Menge, dann wäre die Potenzmenge der Allklasse eine Teilmenge der Allklasse und damit keine mächtigere Menge, wie es Cantors zweites Diagonalargument verlangt.[1] Dieser Widerspruch wird auch als Cantorsche Antinomie bezeichnet. Er zeigt, dass es keine Allmenge oder Menge aller Mengen gibt, sondern dass diese Mengenbildung der naiven Mengenlehre widersprüchlich ist. Sein Beweis belegt zugleich, dass Cantor keine derartige naiv-widersprüchliche Mengenvorstellung hatte, was wegen Cantors Mengendefinition oft behauptet wird. Cantor trennte schon Mengen als konsistente Vielheiten von inkonsistenten Vielheiten, [2] die heute echte Klassen heißen. Die Allklasse ist also ein sehr einfaches Beispiel einer echten Klasse.

Die Allklasse ist zu unterscheiden von der Russellschen Klasse, die bei der Einstufung als Menge die Russellsche Antinomie erzeugt. Beide Klassen fallen erst bei der Annahme des Fundierungsaxioms zusammen; dieses stammt aus der axiomatischen Zermelo-Fraenkel-Mengenlehre, die die naive Mengenlehre ablöste; in ihr gibt es daher keine Allmenge. Auch in anderen axiomatischen Mengenlehren mit Fundierung, etwa in der Neumann-Bernays-Gödel-Mengenlehre gibt es keine Allmenge, aber wohl die Allklasse als Nichtelement. In der allgemeinen Klassenlogik kann die Allklasse widerspruchsfrei gebildet werden; sie ist immer eine echte Klasse, muss aber nicht unbedingt ein Nichtelement sein.

Einzelnachweise

  1. Brief von Cantor an Dedekind vom 31.8.1899, in: Georg Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. E. Zermelo, Berlin 1932, S. 448
  2. Brief von Cantor an Dedekind vom 28.6.1899, in: Georg Cantor: Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, ed. E. Zermelo, Berlin 1932, S. 443

Siehe auch

Literatur

  • Arnold Oberschelp: Allgemeine Mengenlehre. BI-Wiss.-Verl., Mannheim/Leipzig/Wien/Zürich 1994, ISBN 3-411-17271-1.

Wikimedia Foundation.

Игры ⚽ Нужен реферат?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Menge (Mathematik) — Die Menge ist eines der wichtigsten und grundlegenden Konzepte der Mathematik. Man fasst im Rahmen der Mengenlehre einzelne Elemente (beispielsweise Zahlen) zu einer Menge zusammen. Eine Menge muss kein Element enthalten (diese Menge heißt die… …   Deutsch Wikipedia

  • Menge der natürliche Zahlen — ℕ Die natürlichen Zahlen sind die beim Zählen verwendeten Zahlen 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 usw. Oft wird auch die 0 (Null) zu den natürlichen Zahlen gerechnet. Sie bilden bezüglich der Addition und der Multiplikation einen (additiv und… …   Deutsch Wikipedia

  • Menge — Haufen; Gruppe; Partie; Posten; Schwarm; Unzahl; Vielzahl; Masse; Heer; Flut (umgangssprachlich); Quantität; An …   Universal-Lexikon

  • Aller — Kanalartig ausgebaute und pappelgesäumte Aller im Drömling bei Wolfsburg VorsfeldeVorl …   Deutsch Wikipedia

  • Mandelbrot-Menge — Die Mandelbrot Menge ist eine fraktal erscheinende Menge, die eine bedeutende Rolle in der Chaosforschung spielt. Der Rand der Menge weist eine Selbstähnlichkeit auf, die jedoch nicht exakt ist, da es zu Verformungen kommt. Die Visualisierung der …   Deutsch Wikipedia

  • Beschränkte Menge — Die Eigenschaft der Beschränktheit wird in verschiedenen Bereichen der Mathematik einer Menge zugeordnet. Die Menge wird dann als (nach unten oder oben) beschränkte Menge bezeichnet. Damit ist zunächst gemeint, dass alle Elemente der Menge… …   Deutsch Wikipedia

  • Offene Menge — In dem Teilgebiet Topologie der Mathematik ist eine offene Menge eine Menge mit einer genau definierten Eigenschaft (siehe unten). Anschaulich ist eine Menge offen, wenn ihre Elemente nur von Elementen dieser Menge umgeben sind, mit anderen… …   Deutsch Wikipedia

  • Endliche Menge — In der Mengenlehre, einem Teilgebiet der Mathematik, ist eine endliche Menge eine Menge mit endlich vielen Elementen. So ist beispielsweise die Menge eine endliche Menge mit vier Elementen. Die leere Menge hat per definitionem keine Elemente, d.h …   Deutsch Wikipedia

  • Abgeschlossene Menge — In dem Teilgebiet Topologie der Mathematik ist eine abgeschlossene Menge M eine Teilmenge eines topologischen Raums X, deren Komplement X M eine offene Menge ist. Dieser topologische Raum kann z. B. ein metrischer oder euklidischer Raum sein …   Deutsch Wikipedia

  • Abzählbare Menge — In der Mengenlehre wird eine Menge A als abzählbar unendlich bezeichnet, wenn sie die gleiche Mächtigkeit hat wie die Menge der natürlichen Zahlen . Dies bedeutet, dass es eine Bijektion zwischen A und der Menge der natürlichen Zahlen gibt, die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”