- Neutrino-Oszillation
-
Als Neutrinooszillation wird in der Physik die von Bruno Pontecorvo 1957 theoretisch vorhergesagte Umwandlung zwischen verschiedenen Elementarteilchen, den Elektron-, Myon- und Tau-Neutrinos, aufgrund quantenmechanischer Prozesse bezeichnet. D. h. wurde ein Neutrino ursprünglich mit einem bestimmten dieser drei 'Flavours' erzeugt, so kann eine spätere Quantenmessung einen anderen Flavour ergeben (Erhaltung der Leptonenfamilienzahlen ist hier verletzt). Da die Wahrscheinlichkeiten für jeden Flavour sich periodisch mit der Ausbreitung des Neutrinos ändern, spricht man von 'Neutrinooszillationen'.
Für diesen theoretischen Oszillationsvorgang müssten Neutrinos eine (wenn auch vergleichsweise geringe) Masse besitzen, was weitreichende Konsequenzen für das Standardmodell der Elementarteilchenphysik hätte.
Inhaltsverzeichnis
Solares Neutrinodefizit
Zum ersten Mal wurde über mögliche Neutrinooszillationen bei der Entdeckung des solaren Neutrinodefizits diskutiert. Neutrinos entstehen in großer Zahl bei Kernfusionsprozessen im Inneren der Sonne.
In den 1960er Jahren begann Raymond Davis Jr. mit der Untersuchung des solaren Neutrinostroms mit einem Elektron-Neutrinodetektor in der Homestake-Mine (Chlordetektor). Der gemessene Neutrinofluss entsprach aber lediglich weniger als der Hälfte des aufgrund der Leuchtkraft der Sonne erwarteten Flusses.
Die Leuchtkraft der Sonne lässt sich theoretisch aus dem gemessenen Eigenschaften der Atome und Atomkerne über komplexe sogenannte "Sonnen-Modelle" berechnen. Einige dieser Modelle werden als "Standard Sonnen-Modelle (SSM)" bezeichnet, weil sich die Wissenschaftsgemeinde nach langer Diskussion auf sie als Referenzmodell geeinigt hat. Man spricht dann davon, dass diese Modelle "gut verstanden" sind. Unter der Voraussetzung, dass diese SSMs die Sonne richtig beschreiben, und dass Neutrinos keine relevante Wechselwirkung mit Materie eingehen, kann das Ergebnis des Homestake-Experiments als ein "Verschwinden" der Neutrinos gedeutet werden. Die heutige Sichtweise in der beteiligten Wissenschaftsgemeinde geht davon aus, dass die SSMs im wesentlichen richtig sind und dass die Neutrinos keine relevante Wechselwirkung mit Materie im Inneren der Sonne und in der Atmosphäre der Erde eingehen. Das unter diesen Bedingungen errechnete Verschwinden der Neutrinos wird durch Neutrino-Oszillation erklärt, bei der die Elektron-Neutrinos in Myon-Neutrinos oszilliert sind.
Raymond Davis Jr. erhielt für das Homestake-Experiment zum Nachweis kosmischer Neutrinos (d.h. Neutrinos, die aus dem Weltraum kommen) 2002 den Nobelpreis für Physik. Wichtige frühe Beobachtungen lieferte auch Donald H. Perkins.
Theoretische Grundlage
Hierfür werden zwei Annahmen benötigt. Zum einen müssen Neutrinos unterschiedliche Massen besitzen, zum anderen sollen die Massen-Eigenzustände der Neutrinos gegenüber den Wechselwirkungs-Zuständen (Maki-Nakagawa-Sakata Mischung analog zur CKM-Mischung im Quark-Sektor) vermischt sein. Eine Näherungsformel für die 2-Flavour-Oszillation hochrelativistischer Elektronneutrino nach Myon-Neutrino ist
Hierbei ist L die zurückgelegte Strecke des Neutrinos, Θm der Mischungswinkel der Flavours und Δm2 der Massenunterschied der Flavours.
Bei Neutrinooszillationen in Materie tritt der so genannte MSW-Effekt auf (nur bei Dichteänderung) (benannt nach Stanislaw Michejew, Alexei Smirnow und Lincoln Wolfenstein). Dieser verursacht für bestimmte Elektronendichten und Neutrino-Massendifferenzen in Materie eine resonante Verstärkung der Oszillation.
Neutrinooszillationen bieten einen ersten Einblick in die Physik jenseits des Standardmodells. Nach dem Standardmodell hätten Neutrinos keine Masse, insbesondere also keine (quadratischen) Massendifferenzen; zudem würden sie nur als linkshändige Teilchen auftreten. Sind die Neutrinos jedoch massenbehaftete Teilchen – dies wird gerade durch Neutrinooszillationen bestätigt – so sind auch rechtshändige Neutrinos möglich. Die elektroschwache Wechselwirkung wirkt nur auf linkshändige Neutrinos, die rechtshändigen Neutrinos würden keiner Wechselwirkung (außer der Gravitation) unterliegen (sterile Neutrinos, WIMPs).
MNS-Matrix
(auch Maki-Nakagawa-Sakata Matrix)
Die solaren und atmosphärischen Neutrinoexperimente haben gezeigt, dass die Neutrinooszillationen aus einer Abweichung zwischen den Flavour- und Masse-Eigenzuständen der Neutrinos resultieren. Der Zusammenhang zwischen diesen Eigenzuständen ist gegeben durch
- ,
wobei
- ein Neutrino mit einem bestimmten Flavour α bezeichnet. α = e (electron), μ (muon) or τ (tauon).
- ist ein Neutrino mit einer bestimmten Masse, indiziert mit i = 1, 2, 3.
- * bedeutet die komplex-Konjugation (für Antineutrinos sollte diese bei der ersten Gleichung weggelassen und dafür bei der zweiten Gleichung hinzugefügt werden).
Uαi ist das Symbol für die Maki-Nakagawa-Sakata Matrix (auch "MNS-Matrix", "Neutrino-Mischungs-Matrix", oder auch manchmal "PMNS-Matrix" ganannt, um Pontecorvo mit einzuschließen). Sie ist das Analogon zur CKM-Matrix für Quarks und der durch den Weinbergwinkel parametrisierte Mischungsmatrix der elektroschwachen Wechselwirkung. Wäre diese Matrix die Einheitsmatrix, dann wären die Flavour-Eiugenzustände dieselben wie die Masse-Eigenzustände. Jedoch zeigen die genannten Experimente, dass dies nicht der Fall ist.
Wenn die übliche Drei-Neutrino-Theorie konsistent ist, dann muss es sich um eine 3x3-Matrix handeln, bei nur zwei verschiedenen Neutrinos (d. h. vier Flavours) wäre es eine 2x2-Matrix, bei vier Neutrinos eine 4x4-Matrix. Im Fall dreier Flavours ist sie gegeben durch: [1]
wobei cij = cosθij und sij = sinθij. Die Phasenfaktoren α1 und α2 sind nur dann von Null verschieden, wenn die Neutrinos sogenannte Majorana-Teilchen sind (diese Frage ist noch unentschieden) - dies ist aber für die Neutrinooszillation relativ unerheblich. Im Fall eines neutrinolosen doppelten Betazerfalls beeinflussen diese Faktoren lediglich die Rate. Der Phasenfaktor δ ist nur dann von Null verschieden, wenn die Neutrinooszillation die CP-Symmetrie verletzt. Das wird zwar erwartet, wurde aber bisher noch nicht experimentell beobachtet. Falls das Experiment zeigen sollte, dass diese 3x3-Matrix nicht unitär sein sollte, dann würden sterile Neutrinos (englisch: sterile neutrino) oder irgendeine ganz neue Physik benötigt (dasselbe gilt für die CKM-Matrix).
Experimente
Typen
- Radiochemische Experimente wie das erwähnte Homestake-Experiment messen den Elektron-Neutrino-Fluss über einen längeren Zeitraum. Man nutzt in solchen Experimenten aus, dass der Beta-Zerfall durch Neutrino-Einfang umgekehrt werden kann. Zum Beispiel wandelt sich 71Ga durch Einfang eines Elektron-Neutrinos in 71Ge unter Emission eines Elektrons um. Diese einzelnen Atome können dann, wie beim GALLEX-Experiment im Gran Sasso, aus dem Detektor chemisch abgetrennt und durch den Rückzerfall nachgewiesen werden.
- Echtzeitexperimente erfassen nicht die Neutrinos selbst, sondern ihren Rückstoß-Partner. Dessen Impuls wird oft über die Tscherenkow-Strahlung ausgewertet, aber auch andere Detektormethoden der Hochenergiephysik kommen zum Einsatz. Zu diesem Tscherenkow-Typ gehört der japanische Super-Kamiokande-Detektor, ein 50.000 t Leicht-Wasser-Target mit mehr als 10.000 Photomultipliern sowie der kanadische SNO-Detektor. Einen anderen Ansatz die Teilchen in (beinahe-)Echtzeit nachzuweisen, verfolgt der derzeit im italienischen Laboratori Nazionali del Gran Sasso im Aufbau befindliche Detektor OPERA (direkter Nachweis der Tau-Neutrino Appearance).
Beide Experimententypen bestätigen die Neutrinooszillationen.
Astronomische Beobachtungen
Solare Neutrinooszillationen wurden u. a mit den oben erwähnten Super-Kamiokande und SNO beobachtet.
Reaktor- und Beschleunigerexperimente
Hierzu gehören LSND, KARMEN, MiniBooNE, CNGS und Double Chooz.
Siehe auch: Proton-Proton-Reaktion
Weblinks
- The Neutrino Oscillation Industry (engl.)
- The Nobel Prize in Physics 2002 (engl.)
- Neutrino Mass, Mixing, and flavour change - Particle Data Group (PDG) (engl.)
Einzelnachweise
- ↑ S. Eidelman et al.: Particle Data Group - The Review of Particle Physics. In: Physics Letters B. 592, Nr. 1, 2004 Chapter 15: Neutrino mass, mixing, and flavor change. Revised September 2005.
Wikimedia Foundation.