- PKD (Technik)
-
Polykristalliner Diamant (PKD) (PCD engl.) ist eine synthetisch hergestellte, extrem harte, untereinander verwachsene Masse von Diamantpartikeln mit Zufallorientierung in einer Metallmatrix. Es wird durch Zusammensintern von ausgewählten Diamantpartikeln bei hohem Druck und hohen Temperaturen hergestellt. Der Sinterprozess wird streng innerhalb des stabilen Bereichs von Diamant kontrolliert, und dabei entsteht eine extrem harte und verschleißfeste Struktur. PKD kommt zum Einsatz als Schneidstoff in Zerspanungswerkzeugen der Holz-, Kunststoff- und Nichteisenmetall- Bearbeitung. Die hohe Affinität des Eisens zum Kohlenstoff des Diamanten lässt nur in seltenen Fällen eine wirtschaftliche Bearbeitung von Stahl zu. Der Kohlenstoff aus dem Diamanten diffundiert mit zunehmender Temperatur in den Stahl, womit die Standzeit des Werkzeugs stark begrenzt ist.
Die Kurzbezeichnung für polykristallinen Diamant nach ISO 513 ist „DP“.
Anwendungsbeispiele
PKD-Werkzeuge werden eingesetzt zur Bearbeitung von:
- Spanplatten, Faserplatten, Sperrholzplatten und harten Naturhölzern
- Verbundwerkstoffen mit Metallmatrix
- Aluminiumlegierungen
- Kupfer, Messing, Bronze, Magnesiumlegierungen
- Glasfaser, Kohlenstoff-Faser
- Kunststoff, Gummi
- Noch nicht gesinterte ("grüne") und gesinterte Keramiken und Hartmetalle
- Mineralischen und thermoplastischen Werkstoffen in der Gebäudesanierung
Die Werkzeuge werden hauptsächlich in computergesteuerten Bearbeitungszentren verwendet. PKD-Schneiden haben eine sehr hohe Standzeit, sind aber aufgrund ihrer Eigenhärte durch Einsatz der Funkenerosion oder Schleifen mit Diamantschleifscheiben (Keramik- oder Nichteisenmetall-Bindung unter Kühlschmiermittel) zu schärfen.
Schnittgeschwindigkeit bis zu 6000 m/min bei NE-Metallen
Herstellung
Die Herstellung von PKD als gebrauchsfertiger Schneidstoff läuft in zwei Schritten ab:
- HPHT-Verfahren (Hochdruck-Hochtemperatursynthese)
- Hochdruck-Flüssigphasensintern
Die Hochdruck-Hochtemperatursynthese: Die Diamantsynthese nutzt die Eigenschaft von Graphit (Kohlenstoff) sich unter bestimmten Temperatur- und Druckbedingungen in Metallen der VIII. Nebengruppe des Periodensystems (Eisen, Cobalt, Nickel) sowie in Chrom und Mangan zu lösen. Bei diesem Verfahren wird ein Metall-Graphit Gemisch in einer Reaktionskammer Temperatur- und Druckzyklen mit Spitzenwerten von 1800 °C und 6 GPa ausgesetzt. Ist die Schmelztemperatur des Metalls erreicht, überzieht es die Graphitpartikel mit einem dünnen Film und der Graphit löst sich darin bis zur Sättigungsgrenze. Durch die weiter ansteigenden Temperaturen und Drücke wird die Löslichkeit des Kohlenstoffs herabgesetzt und er scheidet sich aufgrund der hohen Drücke in Diamantstruktur wieder teilweise aus der Schmelze ab. Damit der Diamant nicht wieder graphitisiert, wird die Temperatur unter Beibehaltung des Druckes gesenkt. Dieser Zyklus wird mehrfach durchlaufen und die bereits vorhandenen Diamantkristalle wirken im weiteren Prozessverlauf als Kristallisationskeime. Bei diesem Verfahren entstehen teilweise größere monokristalline Diamanten, jedoch hauptsächlich Diamantstreuungen mit einer Korngröße zwischen 2-400 µm.
Hochdruck-Flüssigphasensintern: Bei diesem Sintervorgang treten ähnliche Druck- und Temperaturverhältnisse wie bei der Diamantsynthese auf. Bei dem Verfahren wird die Diamantschicht direkt auf einen cobalthaltigen Hartmetallgrundkörper aufgebracht. Als Ausgangsmaterial für die Schneidstoffsynthese werden definierte Diamantkörnungen mit einem Durchmesser zwischen 2 µm und 100 µm eingesetzt. Diese monokristallinen Diamanten werden unter Zusatz von metallischen Lösungsmittelkatalysatoren und weiteren Sinterhilfsmitteln zu einer polykristallinen Matrix verbunden. Die Diamantkörner werden aufgrund des hohen Druckes plastisch deformiert und komprimiert. Diamantoberflächen, die hingegen nur geringen Drücken ausgesetzt sind, graphitisieren aufgrund der hohen Temperatur. Das flüssige Cobalt aus dem Hartmetallgrundkörper durchdringt die verbleibenden Hohlräume zwischen den Diamantkörnern und löst den dort vorhandenen Graphit. Nach überschreiten der Sättigungsgrenze beim durchlaufen eines Temperaturzyklusses scheidet sich der Graphit wieder als Diamantkristall aus der Schmelze und schafft so eine Verbindung in der Diamantmatrix. Der Sintervorgang ist erst abgeschlossen, wenn der Graphit vollständig umgewandelt ist. Das aus dem Sintervorgang hervorgehende Produkt ist ein Schichtverbundwerkstoff aus einer polykristallinen Diamantmatrix auf einem Hartmetallgrundkörper getrennt durch eine cobaltangereicherte Grenzschicht.
Literatur
- Jan Chr. Siebert: Polykristalliner Diamant als Schneidstoff. Hanser Fachbuchverlag, 1991, ISBN 3-446-16435-9
Wikimedia Foundation.