- Raised-Cosine-Filter
-
Das Raised-Cosine-Filter, auch als Kosinus-Roll-off-Filter oder Nyquist-Filter bezeichnet, ist ein in der digitalen Signalverarbeitung, einem Teilbereich der Nachrichtentechnik, angewandtes elektronisches Filter, welches zur Formung von Signalimpulsen verwendet wird.
Als wesentliche Eigenschaft erfüllt dieses Filter die erste Nyquistbedingung. Dies bedeutet, dass zeitlich aufeinanderfolgende Signalimpulse, welche mit diesem Filter geformt werden, sich nicht gegenseitig überlagern und beeinträchtigen. Damit erlaubt dieses Filter eine zeitlich diskrete Signalübertragung, in welcher keine Intersymbolinterferenz (ISI) auftritt.
Inhaltsverzeichnis
Darstellung
Ein Raised-Cosine-Filter weist immer die Eigenschaften eines Tiefpasses auf und wird in digitalen Filterstrukturen (etwa als Filter mit endlicher Impulsantwort (FIR)) realisiert. Seine Übertragungsfunktion (der Betrag des Frequenzganges) ist bis zu einer bestimmten Frequenz, welche von einem Roll-off-Faktor abhängt, konstant und fällt darüber hinaus für höhere Frequenzen kosinusförmig bis auf den Wert Null ab. Aus diesem Umstand leitet sich auch die Bezeichnung dieses Filters ab.
Das Raised-Cosine-Filter wird bei digitalen Signalübertragungen zur Formung jener am Übertragungskanal verwendeten Sendeimpulse verwendet. Die Sendeimpulse, oder auch Symbole genannt, stellen die diskrete, zu übertragene Information dar. Der Übertragungskanal kann beispielsweise ein Funkkanal oder auch leitungsgebunden sein. Anwendungen liegen daher bei digitalen Übertragungen wie beispielsweise im Mobilfunkbereich.
Die Implementierung jenes Filters erfolgt in digitalen Signalprozessoren (DSP), anwendungsspezifischen digitalen Schaltungen (ASIC) oder frei programmierbaren digitalen Schaltungen, den so genannten Field Programmable Gate Arrays (FPGA).
Übertragungsfunktion
Die Übertragungsfunktion dieses Filters ist, abgesehen von der bei zeitdiskreten Übertragungssystemen immer wesentlichen Symbolrate (1/T), von einem speziellen Faktor, dem Roll-off-Faktor α, abhängig. Die Bezeichnung α für den Roll-off-Faktor ist in der Literatur nicht einheitlich gewählt. Es kommen auch Bezeichnungen wie r oder β vor.
Mit diesem Faktor, welcher Werte zwischen 0 und 1 annehmen kann, wird die Steilheit der Übertragungskennlinie wesentlich beeinflusst: Für den Grenzwert α = 0 ergibt sich ein idealer, nicht kausaler Tiefpass mit rechteckförmiger Übertragungsfunktion. Für α = 1 ergibt sich die bei diesem Filtertyp eine maximal flache Kosinusflanke. Für Zwischenwerte ist der bezogene Frequenzgang einen bestimmten Bereich annähernd konstant, und fällt erst ab dann mit einer etwas steilern Kosinusflanke ab, wie in nachfolgenden Abbildungen dargestellt:
Je größer der Roll-off-Faktor ist, desto mehr nimmt die Bandbreite des Filters zu. Die Bandbreite kann (aufgrund der zeitdiskreten Eigenschaft) nur maximal bis zur Symbolrate 1/T zunehmen. Ein kleinerer Roll-off-Faktor verringert die Bandbreite zwar nur unwesentlich, aber die steile Filterflanke führt zu größeren unerwünschten Überschwingungen, die letztlich in realen Übertragungsystemen ein größeres Phasenrauschen und damit eine unzureichende Pulsformung bewirken und zu Fehlern in der Demodulation führen können.
In der Praxis wird meist ein Roll-off-Faktor unter 0,5 im Bereich von 0,2 bis 0,5 verwendet. So verwendet beispielsweise der Mobilfunkstandard UMTS für die darin verwendeten Impulsfilter einen Roll-off-Faktor von α = 0,22.
Die Bandbreite des Filters mit der Symbolrate fs = 1/T berechnet sich im Basisband zu:
Mathematische Beschreibung der Übertragungsfunktion
Die auf 1 normierte Übertragungsfunktion H(f) ist gegeben durch
mit der Impulsantwort
,
wobei die Singularitäten bei t = 0 und | t | = T / (2α) durch stetige Fortsetzung behoben wurden. Die Impulsantwort weist den Verlauf der si-Funktion auf, welche bei Vielfachen der Symboldauer T Nullstellen hat und damit frei von Intersymbolinterferenz ist.
Symbolrate
Die übertragbare Symbolrate eines Raised-Cosine-Filters bei gegebenen Roll-off-Faktors α und einer Bandbreite B beträgt:
Da im Bandpassbereich die doppelte Bandbreite zur Verfügung steht ergibt sich:
Im Bandpassbereich liegt die Bandbreiteneffizienz im Grenzfall von α=0 bei 2 Symbole/s pro Hertz Bandbreite bzw. bei binärer Übertragung 2 Bit/s pro Hertz Bandbreite. Bei praktischen Realisierungen werden Roll-off-Faktoren im Bereich α=0,3 (30%) gewählt, wodurch sich bei binärer Übertragung eine spektrale Effizienz von ca. 1,5 Bit/s pro Hertz Bandbreite ergibt.
Augendiagramm
Die folgenden Abbildungen zeigen Augendiagramme von Raised-Cosine-Filtern mit verschiedenen Roll-off-Faktoren. Mit diesem lässt sich die Qualität der Signale beurteilen.
Root-Raised-Cosine-Filter
Das Root-Raised-Cosine-Filter, kurz RRC, entspricht der Wurzel (engl. root) aus dem Raised-Cosine-Filter.
Siehe auch
Literatur
- John B. Anderson: Digital Transmission Engineering. 2. Auflage. Wiley Interscience, Lund, Schweden 2005, ISBN 0-471-69464-9.
Weblinks
Wikimedia Foundation.