- Tiefpass
-
Als Tiefpass bezeichnet man in der Elektronik solche Filter, die Signalanteile mit Frequenzen unterhalb ihrer Grenzfrequenz annähernd ungeschwächt passieren lassen, Anteile mit höheren Frequenzen dagegen abschwächen. Entsprechende Filterfunktionen können auch in anderen Bereichen, wie zum Beispiel Mechanik, Akustik oder Hydraulik vorkommen, sie werden dort meist jedoch nicht so genannt. Auch jede Art von mechanischer Trägheit wirkt sich tiefpass-bildend aus. Mit der Abschwächung verbunden ist eine Zeitverzögerung, durch die sich bei sinusförmigem Signalverlauf die Phase verschiebt.
Inhaltsverzeichnis
Anwendung
Tiefpassfilter können verschiedenartig realisiert werden. Üblich sind im Rahmen der Elektronik die Form von passiver analoger Tiefpässe bestehend aus Widerständen, Spulen und Kondensatoren. Durch schaltungstechnische Erweiterungen um aktive Bauelemente wie Operationsverstärker oder Transistoren können aktive analoge Tiefpässe realisiert werden.
Eine weitere Variation besteht im Rahmen der digitalen Signalverarbeitung als zeitdiskrete Tiefpassfilter in Filterstrukturen wie den FIR-Filter oder als IIR-Filter. Die Realisierung kann in digitalen Schaltungen wie FPGAs oder mittels sequentieller Computerprogramme erfolgen.
Tiefpässe für hohe Leistungen im Bereich der Hochfrequenztechnik und elektrischen Energietechnik werden in analoger Technik aus Kondensatoren und Spulen aufgebaut. Hauptanwendung ist die Hochfrequenztechnik, man findet sie auch an den Lastausgängen von Frequenzumrichtern, Klasse-D-Verstärkern, Schaltnetzteilen und in Netzfiltern. Tiefpässe werden auch den Tieftonlautsprechern in Lautsprecherboxen bzw. Subwoofern vorgeschaltet.
Tiefpass-Filter in der Niederfrequenztechnik werden anwendungsbezogen auch als Höhensperre, Höhenfilter, Treble-Cut-Filter, High-Cut-Filter, oder Rauschfilter bezeichnet. Diese Begriffe sind in der Tontechnik gebräuchlich; sie weisen darauf hin, dass ein solches Filter, zum Beispiel in einem Equalizer, die „Höhen“ des Signals bzw. das Rauschen abschwächt, das vorwiegend hohe Frequenzen enthält; siehe auch Entzerrung (Tontechnik). Weiterhin sind Tiefpässe den Tieftonlautsprechern (Woofer) in Lautsprecherboxen vorgeschaltet.
Tiefpassfunktionen kommen auch in der Mechanik (Schwingungsdämpfung), Akustik (die Schallausbreitung tiefer Frequenzen ist verlustärmer), Optik (Kantenfilter), Hydraulik oder der Lichtausbreitung in der Atmosphäre vor, werden dort jedoch nicht so genannt. In der Messtechnik wird der Tiefpass auch als arithmetischer Mittelwertbilder bezeichnet und angewendet z. B. im Drehspulmesswerk oder bei der Erzeugung einer variablen Gleichspannung mittels Pulsweitenmodulation.
Eine Sonderstellung eines Tiefpassfilters nimmt der ideale Tiefpass ein. Dieser Tiefpass weist eine nicht kausale Übertragungsfunktion auf und kann daher in Praxis nicht realisiert werden. Er dient wegen seiner einfachen Übertragungsfunktion in der Filtertheorie als vereinfachtes Modell. Reale Tiefpässe können sich nur möglichst gut der Eigenschaft des idealen Tiefpasses annähern.
Mit Hilfe von Filter-Transformationen kann aus dem Tiefpass ein Hochpass oder auch ein Bandpass gebildet werden.
Darstellung
Der allgemeine mathematische Ansatz für ein Filter führt auf eine Differentialgleichung. Speziell für sinusförmige Größen lässt sich deren oft mühsame Lösung umgehen mit der Verwendung komplexwertiger Größen, siehe komplexe Wechselstromrechnung.
Auch der Frequenzgang beschreibt vollwertig das Verhalten des Filters. Diesen stellt man durch das komplexe Spannungsverhältnis H = Ua /Ue ( bzw. durch das Verstärkungsmaß A(w) = 20 log10 |H(w)| ) und den Phasenverschiebungswinkel φ zwischen Ua und Ue anschaulich mit Bode-Diagramm oder Ortskurve dar.
Tiefpass 1. Ordnung
Beschreibung
Im einfachsten Fall besteht ein Tiefpass aus einer Widerstand-Kondensator-Kombination (RC-Glied) und stellt einen Butterworth-Filter mit 1. Ordnung in folgender Anordnung dar:
Einer sprunghaften Änderung der Eingangsspannung Ue folgt die Ausgangsspannung Ua um dieselbe Sprunghöhe, aber verzögert im Verlauf einer Exponentialfunktion mit einer Zeitkonstanten τ = RC.
Einer sinusförmigen Eingangsspannung mit der Frequenz f folgt am Ausgang gemäß der Spannungsteilerformel wieder eine sinusförmige, aber frequenzabhängig abgeschwächte Spannung
wobei und die Beträge der Aus- bzw. Eingangsspannung bezeichnen, den Betrag des Blindwiderstands des Kondensators und die Kreisfrequenz.
In logarithmischer Darstellung über der Frequenz (Bode-Diagramm) hat das Teilungsverhältnis zwei Asymptoten. Es geht bei niedrigen Frequenzen gegen 1 und für Gleichspannung (Frequenz f = 0) wird . Zu hohen Frequenzen nimmt es mit 6 dB/Oktave bzw. 20 dB/Dekade ab. Unter der Grenzfrequenz fc (cutoff frequency) versteht man diejenige Frequenz, bei der sich die Asymptoten schneiden. Hier ist
(d. h. Ua ist gegenüber Ue um 3 dB abgeschwächt). Die Grenzfrequenz beträgt
Weicht die Frequenz um mehr als eine Zehnerpotenz von der Grenzfrequenz ab (nach oben oder unten), so kann die Kurve mit einer relativen Abweichung von weniger als ½ % durch die jeweilige Asymptote ersetzt werden.
Mit Operationsverstärkern können aktive Tiefpässe realisiert werden. Diese haben den Vorteil, dass der Frequenzgang unabhängig von der am Ausgang angeschlossenen Last ist. Der Betrag der Ausgangsspannung dieses Tiefpasses ist
Bei der Grenzfrequenz ist die Verstärkung entsprechend auf das -fache der Gleichspannungsverstärkung abgefallen, die (abgesehen von der Vorzeichenumkehr) R2 / R1 beträgt.
Herleitung der Formel
In der Darstellung der Wechselgrößen durch komplexe Größen gilt für das Spannungsverhältnis laut Spannungsteilerregel:
mit = Widerstandsoperator bzw. Impedanz des Kondensators.
Mit einer Hilfsgröße
erhält man
Diese Gleichung stellt die normierte Spannungsortskurve dar.
Folgerungen
Daraus leiten sich ab:
- Beträge
Bei Übergang auf Beträge und Blindwiderstand (reelle Größen) ergibt sich die oben angegebene Formel
- Augenblickswerte
Für reelle Augenblickswerte ergibt sich nach den Transformationsregeln für harmonische Schwingungen
- Amplitudengang
- Phasengang
- φ(ω) = − arctan(ωCR)
Tiefpass 2. Ordnung
Einen Tiefpass zweiter Ordnung erhält man, indem man zu R eine Induktivität L in Reihe schaltet, da deren Blindwiderstand XL ebenfalls eine – und zwar zum Kondensator-Blindwiderstand XC gegenläufige – Frequenzabhängigkeit besitzt. Dabei wird R so groß gewählt, dass keine oder nur eine geringe Spannungsüberhöhung des Frequenzgangs entsteht.
Die Übertragungsfunktion eines solchen Tiefpasses ist
- mit .
Der Betrag der Übertragungsfunktion ist
Damit fällt die Ausgangsspannung Ua oberhalb von fc schneller (mit 12 dB/Oktave bzw. 40 dB/Dekade) ab, da nun nicht nur |XC| kleiner sondern zugleich |XL| größer wird.
In dieser Variante werden im Niederfrequenzbereich große Induktivitäten gebraucht (bis zu mehreren Henry). Diese haben schlechte elektrische Eigenschaften und besitzen recht große geometrische Ausmaße. Heutzutage kommen Tiefpässe zweiter und höherer Ordnung nurnoch in der Stromrichtertechnik zum Einsatz. In der Nachrichtentechnik hingegen werden Filter mittlerweile durch Operationsverstärker-Schaltungen realisiert. Diese Filter werden als aktive Tiefpässe (bzw. aktive Filter) bezeichnet und sind nach ihren Erfindern auch als Sallen-Key-Filter bekannt.
Im Hochfrequenzbereich, beispielsweise beim Bau von Sendeanlagen ist R immer null, um Wärmeverluste zu vermeiden. Diese Schaltung wird aus zwei Gründen verwendet:
- Sie dämpft Oberschwingungen, die durch den C-Betrieb der Elektronenröhren entstehen, auf ein zulässiges Maß.
- Die Werte der Bauelemente können so gewählt werden, dass die Schaltung als Resonanztransformator wirkt und eine Leistungsanpassung zwischen Sender und Antenne erlaubt.
Tiefpass n-ter Ordnung
Durch das Hintereinanderschalten von mehreren Tiefpässen kann man dessen Ordnung erhöhen. Beispielsweise bilden zwei hintereinandergeschaltete Tiefpässe 2. Ordnung einen Tiefpass 4. Ordnung. Die Dämpfung ändert sich dabei oberhalb der Grenzfrequenz mit 4•20 dB/Dekade = 80 dB/Dekade, was einer Flankensteilheit von 24 dB/Oktave entspricht.
Zwei zusammengeschaltete Tiefpässe mit gleicher Grenzfrequenz ergeben aber keinen Tiefpass höherer Ordnung derselben Grenzfrequenz. Für die Dimensionierung eines Tiefpasses mit gewünschter Grenzfrequenz stehen spezielle Formeln und Tabellen zur Verfügung.
Zusätzlich tritt das Problem auf, dass ein Tiefpass in einer Kette vom Ausgangswiderstand des vorgeschalteten und dem Eingangswiderstand des nachgeschalteten Tiefpasses beeinflusst wird. Diesem Effekt kann mit Impedanzwandlern entgegengewirkt werden.
Allgemein werden für ein Filter n-ter Ordnung n speichernde Elemente (also Kondensatoren oder Spulen) benötigt.
Die Dämpfung eines Tiefpasses n-ter Ordnung nimmt oberhalb der Grenzfrequenz mit n•20 dB/Dekade zu.
Emphasis und Deemphasis
Bei der statischen Frequenzgangveränderung, der Emphasis und der Deemphasis wird anstatt der Grenzfrequenz üblicherweise die Zeitkonstante angegeben [1].
Siehe auch
Literatur
- Ulrich Tietze, Christoph Schenk und Eberhard Gamm: Halbleiter-Schaltungstechnik. Springer-Verlag, 2002, 12. Auflage, ISBN 3-540-42849-6.
Weblinks
Wikimedia Foundation.