- Elektronischer Filter
-
Die Elektrotechnik bezeichnet Schaltungen als Filter, die ein elektrisches Signal abhängig von der Frequenz in der Amplitude und Phase verändern. Dadurch können unerwünschte Signalanteile abgeschwächt und unterdrückt werden.
Bekannte Anwendungen sind:
- Hörfunk/Rundfunk: Auswahl einer bestimmten Sendefrequenz um einen Sender zu empfangen. Dabei wird nur die eingestellte Frequenz empfangen. Alle anderen Frequenzen werden ausgefiltert.
- Lautsprecher (Frequenzweiche): Die unterschiedlichen Frequenzen für Höhen, Tiefen und Mittelton werden aufgesplittet und an die entsprechenden Lautsprecher verteilt.
- Netzfilter: Unterdrücken Knackser beim Einschalten anderer Verbraucher und sonstige Störungen
Filter im klassischen Sinne, wie Tief- oder Hochpass, verändern den Frequenzgang. Sie werden auch Siebschaltungen genannt. Schaltungen und Verfahren, die komplexere Eigenschaften wie Phasenlage, Impedanz und Rauschanteile verändern, werden auch unter dem Begriff Filter zusammengefasst. In der Tontechnik werden digitale und analoge Frequenzfilter (Filter) auch als Equalizer (kurz EQ) bezeichnet. Dazu gehören auch Präsenzfilter, Absenzfilter, Bandpassfilter, Hochpass und Tiefpass.
Die Grundlagen der Theorie der elektrischen Filter wurden schon 1915 von dem Deutschen Karl Willy Wagner und dem Amerikaner George Ashley Campbell entwickelt.
Dieser Artikel konzentriert sich auf die Darstellung der Siebschaltungen/Frequenzfilter.
Inhaltsverzeichnis
- 1 Definition Frequenzfilter
- 2 Klassifizierung
- 3 Kenngrößen
- 4 Filtertypen
- 5 Weblinks
Definition Frequenzfilter
Frequenzfilter sind Schaltungen („Netzwerke“ genannt) mit vorgegebenem frequenzabhängigem Übertragungsverhalten (Frequenzgang), die bestimmte Frequenzbereiche des Eingangssignals unterdrücken (Sperrbereich) und/oder andere Bereiche bevorzugt übertragen; siehe Durchlassbereich.
Klassifizierung
Filter lassen sich nach mehreren Kriterien klassifizieren, zum Beispiel nach ihrer Komplexität, ihrem Frequenzgang, den verwendeten Bauelementen, der Schaltungsstruktur, der verwendeten Berechnungsmethode, der Trennschärfe bzw. Steilheit und der Phasenverschiebung. Einige dieser Kriterien werden im folgenden als Kenngrößen beschrieben.
Kenngrößen
Übertragungsfunktion
Unabhängig von der konkreten Realisierung des Filters (ob analog oder zeitdiskret bzw. digital) lässt sich die Funktionsweise eines Filters durch seine Übertragungsfunktion beschreiben. Diese bestimmt, wie das Eingangssignal in der Amplitude und in der Phase verändert wird.
Die Filter sollten beim Entwurf anhand der gewünschten Übertragungsfunktion konzipiert werden. Bei der Wahl der Übertragungsfunktion mehrpoliger analoger Filter haben sich je nach gewünschter Filtercharakteristik verschiedene optimierte Frequenzgänge bewährt:
Filtercharakteristik Eigenschaften Vorteile Nachteile Butterworth-Filter Maximal flacher Verlauf des Betragsfrequenzganges im Durchlassbereich, Dämpfung im Sperrbereich monoton verlaufend Gutes Amplitudenverhalten im Durchlass- und Sperrbereich Geringe Flankensteilheit im Übergangsbereich Tschebyscheff-Filter Welligkeit im Durchlassbereich, Dämpfung im Sperrbereich monoton verlaufend Gute Flankensteilheit im Durchlassbereich Große Änderung der Gruppenlaufzeit, schlechtes Zeitverhalten Inverse Tschebyscheff-Filter Monotoner Verlauf im Durchlassbereich, Welligkeit im Sperrbereich Gute Flankensteilheit im Durchlassbereich Große Änderung der Gruppenlaufzeit, schlechtes Zeitverhalten Bessel-Filter, auch als Thomson-Filter bezeichnet Impulsformung Konstante Gruppenlaufzeit (=lineare Phase) im Durchlassbereich Geringe Flankensteilheit im Übergangsbereich Cauer-Filter, auch als elliptisches Filter bezeichnet Welligkeit im Durchlass- und Sperrbereich Sehr gute Flankensteilheit im Übergangsbereich Große Änderung der Gruppenlaufzeit, schlechtes Zeitverhalten Gauß-Filter Impulsformung Konstante Gruppenlaufzeit im Durchlass- und Sperrbereich. Kein Überschwingen bei der Sprungantwort. Reduzierte Intersymbolinterferenz Geringe Flankensteilheit im Übergangsbereich Raised Cosine-Filter Impulsformung, Nyquist-Filter Keine Intersymbolinterferenz Geringe Flankensteilheit im Übergangsbereich Diese primär bei analogen Filterstrukturen angewendeten Übertragungsfunktionen können, mit kleineren Anpassungen, auch auf digitale Filter in der Struktur von IIR-Filtern übertragen werden. Die Anpassungen betreffend dabei den wesentlichen Umstand, dass digitale Filter mit zeitlich diskreten Werten und somit einer endlicher Basisbandbreite arbeiten.
Daneben können weitere hier nicht mehr angeführte Übertragungsfunktionen eingesetzt werden welche je nach Anwendung entsprechend gewählt werden. Es gibt auch noch Filterübertragungsfunktionen welche sich praktisch nicht realisieren lassen, wie die des idealer Tiefpasses. Seine Übertragungsfunktion ist nicht kausal. Die Übertragungsfunktion spielt wegen ihres einfachen Aufbaues und Modellcharakters in der Filtertheorie eine wesentliche Rolle.
Ordnung
Die Ordnung eines Filters beschreibt die Verstärkungsabnahme (Dämpfung und Flankensteilheit) von Frequenzen (weit) oberhalb oder unterhalb der jeweiligen Grenzfrequenz des Filters. Sie ist über der Frequenz n · 20 dB pro Dekade oder was das gleiche bedeutet: n · 6 dB pro Oktave, wobei n die Ordnung des Filters darstellt.
Filter höherer Ordnung können entweder wirklich erstellt oder durch Hintereinanderschaltung von Filtern niedriger Ordnung (1. und 2. Ordnung) realisiert werden.
Die Übertragungsfunktion lautet:
mit
- A0 Gleichspannungsverstärkung
- ci Filterkoeffizienten
- n Ordnung des Filters
Filtertypen
Filter und Frequenzgang, Selektionsverhalten
Die theoretischen Standardfälle des Selektionsverhaltens eines Filters sind:
- Ein Tiefpassfilter schwächt die hohen Frequenzen bis zu einer Grenzfrequenz und lässt alle tieferen Frequenzen praktisch ohne Abschwächung (Verstärkung = 1) passieren.
Anwendung findet dieser „Tiefpass“ z. B. als Anti-Aliasing-Filter (siehe Alias-Effekt) oder zur Rauschunterdrückung. - Ein Hochpassfilter schwächt die tiefen Frequenzen bis zu einer Grenzfrequenz, während alle höheren Frequenzen (mit der Verstärkung 1) durchgelassen werden. Mit diesem "Hochpass" lassen sich unter anderem Gleichspannungsanteile oder langsames Driften im Signal unterdrücken.
- Ein Bandpassfilter schwächt alle Frequenzen außerhalb eines Frequenzintervalls ab, das durch zwei Grenzfrequenzen festgelegt ist. Amplituden- oder frequenzmodulierte Signale tragen den Hauptanteil ihrer Information in einem begrenzten Frequenzband. Ein Bandpass lässt diesen Anteil aus Frequenzgemischen passieren und sperrt die Anteile unterhalb und oberhalb der Grenzfrequenzen. Bandpassfilter werden auch kurz Bandfilter genannt und zum Beispiel im Hochfrequenzbereich eines Superhet-Rundfunkempfängers zur Frequenzselektion der Zwischenfrequenz verwendet.
- Ein Bandstoppfilter (Saugkreis, Notch-Filter, Kerbfilter, Bandsperre) stellt die Umkehrung des Bandfilters dar. Nur Frequenzen innerhalb eines Frequenzintervalls, das durch zwei Grenzfrequenzen festgelegt ist, werden abgeschwächt. Störungen fester Frequenz, wie die Störungen der Netzfrequenz oder die Einstrahlung von Rundfunksendern, lassen sich aus dem Signal mehr oder weniger wirkungsvoll entfernen.
- Ein Allpassfilter lässt alle Frequenzen bei gleicher Verstärkung zum Ausgang durch. Mit Allpässen kann eine frequenzabhängige Phasenverschiebung durchgeführt oder eine Impedanztransformation durchgeführt werden.
- Ein Multiratenfilter wie CIC Filter, das in der digitalen Signalverarbeitung zur Konvertierung von Signalfolgen zwischen unterschiedlichen Abtastraten verwendet wird. Es dient zur Unterdrückung von Aliasing und zur Vermeidung von Spiegelspektren.
Der Idealfall einer rechteckigen bzw. stufenförmigen Übertragungsfunktion lässt sich in der Praxis allerdings nicht erreichen. Im Rahmen des Filterentwurfes zur Bestimmtung der Filterparameter wird üblicherweise von einem normierten Tiefpassfilter ausgegangen. In Folge werden die ermittelten Filterkoeffizienten mittels Filter-Transformationen wie der Tiefpass-Hochpass-Transformation oder einer Tiefpass-Bandpass-Transformation auf die eigentliche Filterart des Zielsystems umgesetzt.
Entsprechende Filterarten werden sowohl im Niederfrequenzbereich (z. B. Audiotechnik) als auch im Hochfrequenzbereich (z. B. Rundfunktechnik) verwendet.
Parametrische Filter sind in einem oder mehreren Parametern (Frequenz, Güte) einstellbar und können meistens wahlweise als Tiefpass-, Hochpass- oder Bandpassfilter betrieben werden. Einsatzgebiete sind Mischpulte und Audiotechnik.
Lineare und nichtlineare Filter
Lineare Filter
Bei einem linearen Filter sind die Eigenschaften der Filterung unabhängig vom Signalpegel. Das Signal wird nicht verzerrt. Wenn man das Eingangssignal für eine bestimmte Frequenz um einen Faktor a vergrößert, so ist auch das Ausgangssignal für diese Frequenz entsprechend vergrößert. Die Form des Signals wird dabei nicht grundlegend verändert. Tiefpass, Hochpass, Bandpass, Bandsperre und Allpass werden als lineare Filter bezeichnet. Es gibt aber auch wesentlich komplexere lineare Filter. Beispielsweise ist ein Echo-Effekt oder ein Kammfilter ebenfalls linear.
Sie können als Vierpolersatzschaltbild dargestellt werden.
Nichtlineare Filter
Bei einem nichtlinearen Filter sind die Eigenschaften der Filterung abhängig vom Signalpegel und vom zeitlichen Verlauf des Signals. Das Signal wird in seiner Form verzerrt. Zu den nichtlinearen Filtern gehören zum Beispiel Begrenzer, Verzerrer, Gleichrichter (Betrag) und Medianfilter.
Siehe auch: nichtlineares System.
Aktiv vs. Passiv
Passive Filter oder elektrische Filter
Die einfachsten Filter basieren auf Kombinationen von Widerständen (R), Spulen (L), Kondensatoren (C) oder zum Beispiel Quarzen (Q) oder Keramikelemente. Damit sind zum Beispiel Filter aus RC-, RL-, LC-, LCQ oder RCL-Kombinationen realisierbar.
Da diese Filter ohne externe Spannungsversorgung arbeiten können, werden diese Kombinationen 'passive Filter' genannt. Je nach Aufbau des Netzwerkes wirken die Filter als Tiefpass-, Bandpass-, Hochpass-, Bandstopp- oder als Allpassfilter.
In den meisten Filteranwendungen ist ein scharfer Übergang der Übertragungsfunktion vom Durchlass- in den Sperrbereich erwünscht. Die "Schärfe" wird durch die Güte des Filters angegeben. Je größer die Güte, desto größer ist die Dämpfung im Sperrbereich pro Dekade. Der Grad und Art der Übertragungsfunktion, und damit auch die Anzahl und Qualität der Bauelemente des Filters, sowie die Kosten für die Realisierung, richten sich nach der gewünschten Güte.
Passive Filter werden oft nach der Art ihrer Übertragungsfunktion bezeichnet, z. B. Bessel-, Tschebyscheff-, Cauer-Filter. Sie eignen sich besonders gut für Filteraufgaben im Bereich hoher Frequenzen und hoher Leistungen, sowie in allen Anwendungsfällen bei denen es auf geringes Eigenrauschen und hohe Linearität ankommt.
Aktive Filter oder elektronische Filter
Aktive Filter bestehen neben den passiven Komponenten noch aus aktiven Komponenten (z. B. Transistoren oder Operationsverstärkern). Damit benötigen aktive Filter stets eine eigene Spannungsversorgung. Bei der Realisierung aktiver Filter werden häufig neben den aktiven Komponenten nur noch Widerstände (R) und Kondensatoren (C) eingesetzt. In diesem Fall wird ein solches Filter auch aktives RC-Filter genannt. Ein aktives, analoges Filter zweiter Ordnung mit einem Operationsverstärker und mehreren Widerständen und Kondensatoren mit besonders einfachen schaltungstechnischen Aufbau wird als Sallen-Key Filter bezeichnet.
Mit aktiven Komponenten können Induktivitäten simuliert werden (Gyrator), wodurch gerade bei kleinen Frequenzen (< 1 kHz) auf große Spulen verzichtet werden kann. Aktive Filter besitzen dadurch den Vorteil, dass durch den Verzicht auf Spulen hohe Güten erreicht werden können.
Zusätzlich erlauben die aktiven Komponenten eine einfach zu integrierende Verstärkung des Signales, so dass aktive Filter zugleich auch Verstärker darstellen. Dieses ist aber keine zwingende Kombination.
Analoge Filter
Siehe Analogfilter
Digitale Filter und digitale Signalprozessoren (DSP)
Die digitalen Filter lassen sich nach der Art des Eingang- bzw. Ausgangssignales einteilen; berücksichtigt wird, ob diese analog oder digital vorliegen und weiterbearbeitet werden. Im ersten Fall muss das Eingangssignal über einen A/D-Wandler digitalisiert werden, bevor es bearbeitet werden kann. Nach der Bearbeitung muss das Signal mit Hilfe eines D/A-Wandler umgesetzt werden.
Durch die Bearbeitung von digitalisierten Signalen entweder mit Signalprozessoren oder mit Computern wird eine Flexibilität erreicht, die von keinem anderen Filtertyp erreicht werden kann. Die Flexibilität liegt darin, dass das Filter durch einen Datensatz modelliert wird, der relativ einfach geändert werden kann. So können mit einem Filter alle oben genannten Filtertypen realisiert werden, ohne dass Änderungen an der Hardware vorgenommen werden müssen.
Die Nachteile liegen dagegen unter anderem in der vergleichsweise hohen Latenzzeit.
Digitale Filter können das Signal entweder im Zeitbereich bearbeiten (analog zu den anderen Filterarten) oder im Frequenzbereich.
Im Zeitbereich liegt der Vorteil der digitalen Filter in der nicht vorhandenen Bauteiltoleranz und Alterung der Bauteile.
Im Frequenzbereich können die Filter sehr flexibel gestaltet werden, insbesondere können diese Filter deutlich leichter den vorhandenen Gegebenheiten angepasst werden, da das Filter als Datensatz vorliegt.
Die Transformation zwischen dem Zeitbereich und dem Frequenzbereich (und umgekehrt) kann unter anderem mit der Fouriertransformation oder Laplacetransformation durchgeführt werden.
Anwendung finden digitale Filter zum Beispiel in
- Audiotechnik (zum Beispiel mit echtzeitfähigem DSP) als Effektgerät
- Videotechnik
- Funktechnik
Weiterhin kann jede Prozedur, die einem digitalen oder analogen Eingangssignal reproduzierbar ein definiertes Ausgangssignal zuordnet, als digitaler Filter verstanden werden, z. B. Chiffren oder die Filterfunktionen in Audioprogrammen oder Bildbearbeitungsprogrammen
Mit digitalen Filtern können Signale außer in Echtzeit auch zeitlich unabhängig von ihrer Verwendung berechnet werden. Zum Beispiel ist es möglich, sehr komplexe Bearbeitungen anzuwenden, um alte Schallplattenaufnahmen zu restaurieren.
Durch Faltung können einem Tonsignal Klangcharakteristiken komplexer Umgebungen aufgeprägt werden.
Andere Filter
Quarzfilter
In den 1930er Jahre stellten Ingenieure fest, dass verschiedene Quarze bei akustischen Frequenzen mitschwingen können. Heutzutage werden Quarze vor allem bei wesentlich höheren Frequenzen eingesetzt.
Der Vorteil von Quarz gegenüber anderen harten Materialien ist der piezoelektrische Effekt, der es ermöglichte, direkt die mechanische Schwingung in elektrische umzuwandeln und umgekehrt. Weiterhin besitzen Quarze eine geringe thermische Ausdehnung, so dass die Frequenz über einen großen Temperaturbereich konstant bleibt.
Quarzfilter besitzen eine wesentlich höhere Güte als LCR-Glieder. Wenn eine noch höhere Güte benötigt wird, können die Quarze zusätzlich temperaturstabilisiert oder auch hintereinander geschaltet werden.
Keramikfilter
Das Funktionsprinzip der Keramikfilter, auch dieelektrische Filter genannt, gleicht dem der Quarzfilter; sie haben allerdings schlechtere technische Eigenschaften, sind aber weitaus kostengünstiger. Sie werden vorwiegend im ZF-Pfad eingesetzt.
Atom-Filter
Um Filter bei sehr hohen Frequenzen zu realisieren, können die Eigenschwingungen von Atomen und Molekülen ausgenutzt werden. Dieses wird z. B. bei der Atomuhr verwendet. Diese Filter besitzen extrem hohe Gütefaktoren.
Switched-C-Filter
Bei dem Switched-Capacitor-Filter werden mehrere Kondensatoren durch elektronische Schalter verbunden und bilden zusammen mit Widerständen ein Schaltnetz. Die Taktfrequenz, mit der die Schalter geschaltet werden, hat direkten Einfluss auf den Frequenzgang. Sie muss deutlich höher als die höchste zu filternde Frequenz liegen.
AOW-Filter / SAW-Filter
Akustische Oberflächenwellen-Filter, auch AOW- oder SAW-Filter genannt, basieren auf der Interferenz von Signalen verschiedener Laufzeit, realisiert mit dem Piezoeffekt. Es sind hohe Güten erreichbar; Ausführung meist als Bandpassfilter mit einer geringen Bandbreite von wenigen MHz und finden deshalb vor allem in der mobilen Datenübertragung Anwendung.
BAW-Filter
BAW-Filter (engl. bulk acoustic wave) sind ebenfalls auf dem Piezoeffekt beruhende Filter, die auf CMOS-Basis hergestellt werden und gegenüber den SAW-Filtern entscheidende elektrische und physikalische Vorteile bietet.
Raised Cosine Filter
Raised-Cosine-Filter sind realisierbare Impulsformfilter mit flacher Flanke, die die erste Nyquistbedingung erfüllen und keine Intersymbolinterferenz (ISI) erzeugen.
Weblinks
Wikimedia Foundation.