- Sekans Hyperbolicus und Kosekans Hyperbolicus
-
Die Funktionen Kosekans Hyperbolicus (csch) und Sekans Hyperbolicus (sech) sind Hyperbelfunktionen. Sie ergeben sich als Kehrwert von Sinus Hyperbolicus bzw. Kosinus Hyperbolicus.
Inhaltsverzeichnis
Definitionen
Eigenschaften
Sekans Hyperbolicus Kosekans Hyperbolicus Definitionsbereich Wertebereich Periodizität keine keine Monotonie x < 0 streng monoton steigend
x > 0 streng monoton fallendx > 0 streng monoton fallend
x < 0 streng monoton fallendSymmetrien Spiegelsymmetrie zur y-Achse Punktsymmetrie zum Koordinatenursprung Asymptote für für Nullstellen keine keine Sprungstellen keine keine Polstellen keine x = 0 Extrema Maximum bei x = 0 keine Wendepunkte keine Umkehrfunktionen
Die Umkehrfunktion sind die entsprechenden Areafunktionen:
Ableitungen
Integrale
Reihenentwicklungen
Komplexes Argument
Siehe auch
Weblinks
- Eric W. Weisstein: Hyperbolic Secant und Hyperbolic Cosecant auf MathWorld
Primäre trigonometrische Funktionen
Sinus und Kosinus | Tangens und Kotangens | Sekans und KosekansUmkehrfunktionen (Arkusfunktionen)
Arkussinus und Arkuskosinus | Arkustangens und Arkuskotangens | Arkussekans und ArkuskosekansHyperbelfunktionen
Sinus Hyperbolicus und Kosinus Hyperbolicus | Tangens Hyperbolicus und Kotangens Hyperbolicus | Sekans Hyperbolicus und Kosekans HyperbolicusAreafunktionen
Areasinus Hyperbolicus und Areakosinus Hyperbolicus | Areatangens Hyperbolicus und Areakotangens Hyperbolicus | Areasekans Hyperbolicus und Areakosekans Hyperbolicus
Wikimedia Foundation.
Schlagen Sie auch in anderen Wörterbüchern nach:
Sekans Hyperbolicus — (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 … Deutsch Wikipedia
Sekans und Kosekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… … Deutsch Wikipedia
Kosekans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 … Deutsch Wikipedia
Kosekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… … Deutsch Wikipedia
Sekans — Definitionen am Einheitskreis Sekans und Kosekans sind trigonometrische Funktionen. Der Sekans wird mit sec(x) bezeichnet, der Kosekans mit csc(x). Die Funktionen haben ihren Namen durch die Definition im Einheitskreis. Die Funktionswerte… … Deutsch Wikipedia
Hyperbolicus — Der Terminus Hyperbolicus bezeichnet: Sinus Hyperbolicus und Kosinus Hyperbolicus Areasinus Hyperbolicus und Areakosinus Hyperbolicus Tangens Hyperbolicus und Kotangens Hyperbolicus Areatangens Hyperbolicus und Areakotangens Hyperbolicus Sekans… … Deutsch Wikipedia
Cosecans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 … Deutsch Wikipedia
Secans Hyperbolicus — Sekans Hyperbolicus (blau) und Kosekans Hyperbolicus (rot) Die Funktionen Sekans Hyperbolicus ( ) und Kosekans Hyperbolicus ( ) sind Hyperbelfunktionen. Inhaltsverzeichnis 1 Definitionen 2 … Deutsch Wikipedia
Area-Kosekans Hyperbolicus — Areasekans Hyperbolicus und Areakosekans Hyperbolicus gehören zu den Areafunktionen. Sie sind die Umkehrfunktionen zu Sekans Hyperbolicus bzw. Kosekans Hyperbolicus. Als Funktionen werden sie oder seltener bzw. und seltener ges … Deutsch Wikipedia
Areacosekans Hyperbolicus — Areasekans Hyperbolicus und Areakosekans Hyperbolicus gehören zu den Areafunktionen. Sie sind die Umkehrfunktionen zu Sekans Hyperbolicus bzw. Kosekans Hyperbolicus. Als Funktionen werden sie oder seltener bzw. und seltener ges … Deutsch Wikipedia