Stoßantwort

Stoßantwort

Die Impulsantwort, auch Gewichtsfunktion genannt, ist das Ausgangssignal eines Systems, bei dem am Eingang ein Dirac-Impuls zugeführt wird. Sie wird in der Systemtheorie zur Charakterisierung linearer, zeitinvarianter Systeme benutzt. Der (ideale) Dirac-Impuls wird deshalb gerne für theoretische Betrachtungen verwendet, da er ein großes Frequenzspektrum besitzt und das invariante Element der Faltung darstellt. Bei der experimentellen Analyse werden Systeme dagegen häufig mit der Sprungfunktion angeregt und die Sprungantwort gemessen, die das Übertragungsverhalten eines solchen Systems ebenfalls vollständig beschreibt. Dadurch vermeidet man es, einen Dirac-Impuls mit guter Näherung erzeugen zu müssen, wofür das Eingangssignal kurzzeitig einen sehr hohen Wert annehmen müsste.

Es gilt: g(t) = \frac{{dh(t)}}{{dt}} Die Impulsantwort g(t) ist die Ableitung der Sprungantwort h(t).

Im Fall diskreter Signale ist das System ein linearer digitaler Filter. Das Dirac-Impuls-Signal ist ebenfalls das Eins-Element der diskreten Faltung, repräsentiert jedoch hier den Frequenzbereich [-π,π], entsprechend der Nyquist-Frequenz.

Mit Hilfe der Impulsantwort lässt sich ein System charakterisieren und z. B. dessen Frequenzgang oder Übertragungsfunktion bestimmen. Diese ist bei streng stabilen Systemen die Fourier-Transformierte der Impulsantwort.

Wird also ein Dirac-Impuls auf ein unbekanntes System gegeben, so lässt sich aus der Impulsantwort durch Fourier-Analyse, speziell durch die Laplace-Transformation, der Frequenzgang des unbekannten Systems ermitteln. Umgekehrt kann die Wirkung des Systems durch Faltung mit der Impulsantwort im Zeitbereich oder durch Multiplikation mit der Übertragungsfunktion im Frequenzbereich bestimmt werden.

Praktische Anwendung findet dieses Prinzip in jüngster Zeit in einigen DirectX- und VST-Plugins (siehe Faltungshall), die jegliches akustische System (Räume, Geräte, Mikrofone,...) virtuell nachbilden können. Zur Gewinnung der Impulsantwort wird dabei ein Signal, das hinreichend einem Dirac-Impuls ähnelt (also ein möglichst kurzer "Knall"), im Rechner generiert und (bei Räumen und Mikrofonen über Soundkarte, Verstärker und Lautsprecher, bei Geräten direkt) auf das System gegeben und seine Antwort (bei Räumen über ein günstig postiertes Mikrofon, bei Geräten und Mikrofonen direkt) aufgenommen. Bei der Ermittlung des Frequenzgangs kann es zu Verzerrungen kommen. Gründe sind vor allem Nichtlinearitäten (Klirrfaktor) und Rauschen.

Daher werden heute für akustische Messungen (fast) nur noch Methoden verwendet, welche die Impulsantwort nachträglich aus einer Messung mit einem breitbandigem (Pseudo)-Rauschsignal berechnen. Hierfür wird meist entweder ein Maximum Length Sequence Signal mit nachfolgender Kreuzkorrelation oder eine sogenannte Dual-FFT Messung, also der Vergleich der Spektren des Anregungs- und des Ausgangssignals, verwendet.

Hier das Beispiel eines Dirac-Impulses als Eingangssignal Dirac(t) für ein System mit unbekannter Übertragungsfunktion und die daraus resultierende Impulsantwort g(t) (hier eine (zeitlich beschnittene) Sinc-Funktion, die auf ein Tiefpass-Filter hindeutet).

Impulsantwort eines unbekannten Systems

Weblinks


Wikimedia Foundation.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Fourier-Transformation — Die Fourier Transformation (genauer die kontinuierliche Fourier Transformation; Aussprache des Namens: fur je) ist eine Methode der Fourier Analysis, die es erlaubt, kontinuierliche, aperiodische Signale in ein kontinuierliches Spektrum zu… …   Deutsch Wikipedia

  • Impulsantwort — Die Impulsantwort, auch Gewichtsfunktion oder Stoßantwort genannt, ist das Ausgangssignal eines Systems, bei dem am Eingang ein Dirac Impuls zugeführt wird. Sie wird in der Systemtheorie zur Charakterisierung linearer, zeitinvarianter Systeme… …   Deutsch Wikipedia

  • Impulsoszillometrie — Die Impulsoszillometrie ist ein Verfahren zur mechanischen Analyse der Atmung (Lungenfunktionsuntersuchung) und dient insbesondere zur Bestimmung des Atemwegswiderstandes. Über den Atemwegswiderstand hinaus erfasst es auch die Trägheits und… …   Deutsch Wikipedia

  • Kontinuierliche Fourier-Transformation — Die kontinuierliche Fourier Transformation ist eine Form der Fourier Transformation (FT), die es erlaubt, kontinuierliche, aperiodische Vorgänge in ein kontinuierliches Spektrum zu zerlegen. Oft wird diese Transformation auch einfach als Fourier… …   Deutsch Wikipedia

  • Kontinuierliche Fouriertransformation — Die kontinuierliche Fourier Transformation ist eine Form der Fourier Transformation (FT), die es erlaubt, kontinuierliche, aperiodische Vorgänge in ein kontinuierliches Spektrum zu zerlegen. Oft wird diese Transformation auch einfach als Fourier… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”