- Theoretische Mechanik
-
Die theoretische Mechanik befasst sich mit den mathematischen Grundlagen der klassischen newtonschen und relativistischen Mechanik. Sie untersucht die Eigenschaften der Grundgleichungen und ihrer Lösungen und entwickelt Methoden zur exakten oder näherungsweisen Lösung von bestimmten Problemklassen.
Formalismen
Im Prinzip enthalten die Newtonschen beziehungsweise relativistischen Gleichungen bereits die gesamte klassische Mechanik. In der Praxis sind diese Gleichungen jedoch für die Behandlung vieler Probleme nicht die ideale Formulierung. Daher wurden alternative Formulierungen der Mechanik entwickelt, die für die meisten Probleme besser geeignet sind. Zudem eignen sich die alternativen Formulierungen in der Regel besser, um den Zusammenhang zwischen klassischer Mechanik und Quantenmechanik zu untersuchen.
Eine dieser alternativen Formulierungen ist das Prinzip der extremalen Wirkung (oft etwas ungenau als "Prinzip der kleinsten Wirkung" bezeichnet, da in den meisten Fällen das Extremum ein Minimum ist). Es liefert die Grundlage für das Noether-Theorem, das einen Zusammenhang zwischen den Symmetrien eines physikalischen Systems und dessen Erhaltungsgrößen herstellt. Zudem ergibt es sich mittels der Stationäre-Phasen-Näherung als Grenzfall der Quantenmechanik für kurze Wellenlängen, was eine formale Ableitung der klassischen Mechanik als Grenzfall der Quantenmechanik erlaubt (Korrespondenzprinzip). Für die unmittelbare praktische Berechnung konkreter Probleme ist dieses Prinzip jedoch in der Regel nicht günstig.
Aus dem Prinzip der extremalen Wirkung lässt sich jedoch der Lagrange-Formalismus herleiten, der für die meisten konkreten Probleme die Methode der Wahl ist. Er liefert eine konsistente formale Methode, um die Bewegungsgleichungen für ein physikalisches System zu bestimmen. Hierbei können insbesondere beliebige Zwangsbedingungen (beispielsweise die Bedingung, dass das Rad eines Fahrrads nur abrollen, aber nicht rutschen soll) einbezogen werden, ohne dass man sich im Voraus überlegen muss, welche Zwangskräfte dabei auftreten; letztere erhält man als Resultat aus dem Formalismus. Der Lagrange-Formalismus liefert auch die Grundlage für den Pfadintegral-Formalismus der Quantenmechanik.
Aus dem Lagrange-Formalismus lässt sich der Hamilton-Formalismus herleiten. Auch dieser ist für die Lösung vieler konkreter Probleme gut geeignet. Zudem eignet er sich gut zur theoretischen Untersuchung der Eigenschaften klassischer Trajektorien. Da er – anders als die bisher vorgestellten Formalismen – im Phasenraum arbeitet, kann er den kompletten mathematischen Apparat der symplektischen Geometrie nutzen. Der Hamilton-Formalismus ist auch die Ausgangsbasis für die kanonische Quantisierung, dem einfachsten Weg, um die Schrödingergleichung für ein physikalisches System aufzustellen.
Aus der Hamiltonschen Mechanik lässt sich wiederum der Hamilton-Jacobi-Formalismus herleiten. Dieser ist wegen der Verwendung partieller Differentialgleichungen in der Regel nicht ideal für die Lösung konkreter Probleme, eignet sich jedoch für theoretische Untersuchungen. Die Hamilton-Jacobi-Gleichung lässt sich auch direkt als erste Näherung der Phase der quantenmechanischen Wellenfunktion aus der Schrödingergleichung bei formaler Entwicklung nach ħ gewinnen. Sie liefern daher einen besonders direkten Zusammenhang zwischen klassischer Mechanik und Quantenmechanik.
Methoden
Die theoretische Mechanik verwendet verschiedene Methoden zur Untersuchung des Verhaltens physikalischer Systeme. Die naheliegenste Methode, die geschlossene mathematische Lösung der Bewegungsgleichungen, ist nur in den seltensten Fällen überhaupt möglich. Zudem verrät sie nur etwas über das betreffende Einzelsystem; in der theoretischen Physik interessiert man sich aber oft mehr für Eigenschaften, die ganze Klassen physikalischer Systeme gemeinsam haben.
Eine wichtige Klasse bilden die Methoden der Störungstheorie. Diese beschreiben, wie sich das Verhalten eines Systems ändert, wenn man dessen Eigenschaften nur leicht verändert (beispielsweise ein Pendel nur leicht aus der Ruhelage auslenkt, oder an einem System ein schwaches elektrischen Feld anlegt). Störungstheoretische Methoden liefern oft im konkreten Fall die einzige Möglichkeit, analytische Lösungen zu berechnen, sie erlauben aber auch oft tiefere Einsichten in das Verhalten eines physikalischen Systems.
Wikimedia Foundation.