Uniformisierende

Uniformisierende

Im mathematischen Teilgebiet der Algebra sind diskrete Bewertungsringe gewisse lokale Ringe mit besonders guten Eigenschaften.

Definition: Ein diskreter Bewertungsring ist ein lokaler Hauptidealring, der kein Körper ist. Ein Erzeuger des maximalen Ideals heißt uniformisierendes Element oder kurz eine Uniformisierende. Man schreibt auch kurz DVR (für discrete valuation ring) oder DBR.

Eigenschaften

  • Ein diskreter Bewertungsring ist ein Dedekindring, insbesondere ein regulärer lokaler Integritätsring.
  • Das Spektrum SpecR eines diskreten Bewertungsringes R besteht aus genau zwei Punkten:

Einem abgeschlossenen Punkt, dem speziellen Punkt, zugehörig zum maximalen Ideal (π) (wenn π das uniformisierende Element ist) und einem nicht abgeschlossenen (aber offenen) Punkt, dem generischen Punkt (0).

  • Für einen diskreten Bewertungsring R wird durch Quot(R) \rightarrow \mathbb Z ; \frac{a}{b} \mapsto v_{\pi}(a) - v_{\pi}(b) eine diskrete Bewertung auf dem Quotientenkörper definiert (wenn vπ(a) = n für (a) = (π)n in R). Diese Bewertung hat R als Bewertungsring.
  • Ordnet man einem diskret bewerteten Körper F seinen Bewertungsring \mathcal O_Fzu und wendet darauf obige Konstruktion an, so erhält man einen diskret bewerteten Körper, der isomorph zu F ist. Mit anderen Worten: Diese Konstruktionen induzieren eine Äquivalenz von Kategorien zwischen diskret bewerteten Körpern und diskreten Bewertungsringen.

Beispiele

\mathbb Z_{(p)}=\left.\left\{\frac zn\,\right| z,n\in\mathbb Z,p\nmid n\right\}
\mathbb C\{T\}=\left.\left\{\sum_{i=0}^\infty a_iT^i\,\right|\exists r>0\colon \sum_{i=0}^\infty a_iz^i\ \mathrm{konvergiert\ f\ddot ur}\ |z|<r\right\}\subset\mathbb C[[T]].

Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Enneperfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Helicoid — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Minimalfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, wenn sie über einen entsprechenden Rahmen (wie etwa einem Blasring) gespannt sind. In mathematischer Sprache …   Deutsch Wikipedia

  • Scherkfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Wendelfläche — Eine Minimalfläche ist eine Fläche im Raum, die lokal minimalen Flächeninhalt hat. Derartige Formen nehmen beispielsweise Seifenhäute an, sofern sie nicht wie im Fall von Blasen durch eingeschlossene Luft aufgebläht werden. In mathematischer… …   Deutsch Wikipedia

  • Uniformisierendes Element — Im mathematischen Teilgebiet der Algebra sind diskrete Bewertungsringe gewisse lokale Ringe mit besonders guten Eigenschaften. Definition: Ein diskreter Bewertungsring ist ein lokaler Hauptidealring, der kein Körper ist. Ein Erzeuger des… …   Deutsch Wikipedia

  • Diskreter Bewertungsring — Im mathematischen Teilgebiet der Algebra sind diskrete Bewertungsringe gewisse lokale Ringe mit besonders guten Eigenschaften. Definition: Ein diskreter Bewertungsring ist ein lokaler Hauptidealring, der kein Körper ist. Ein Erzeuger des… …   Deutsch Wikipedia

  • Residuum (Funktionentheorie) — In der Funktionentheorie ist das Residuum einer komplexwertigen Funktion ein Hilfsmittel zur Berechnung von komplexen Kurvenintegralen mit Hilfe des Residuensatzes. Inhaltsverzeichnis 1 Definition 1.1 Komplexe Gebiete 1.2 Riemannsche Zahlenkugel …   Deutsch Wikipedia

  • Verzweigte Körpererweiterung — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1… …   Deutsch Wikipedia

  • Verzweigung (Algebra) — Verzweigung ist ein mathematischer Begriff, der die Gebiete Algebra, algebraische Geometrie und komplexe Analysis miteinander verbindet. Inhaltsverzeichnis 1 Namengebendes Beispiel 2 Verzweigung im Kontext von Erweiterungen bewerteter Körper 2.1 …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”