Formale Potenzreihe

Formale Potenzreihe

Formale Potenzreihen in der Mathematik sind ein Analogon zu den Potenzreihen der Analysis, ignorieren jedoch im Gegensatz zu diesen sämtliche Konvergenzfragen.

Inhaltsverzeichnis

Definition

Für einen kommutativen Halbring A mit Einselement bezeichne A[[X]] den Ring der Folgen

(a0, a1, ...)

mit der komponentenweisen Addition und der Faltung als Multiplikation,

(a_0,a_1,\dots)\,(b_0,b_1,\dots)=(c_0,c_1,\dots)\ ,\quad c_k=\sum_{i=0}^k\,a_i\,b_{k-i}\,.

Die Elemente von A[[X]] heißen formale Potenzreihen und werden als

a0 + a1X + a2X2 + ...

geschrieben.

Eigenschaften

Weiterführende Themen

Literatur


Wikimedia Foundation.

Игры ⚽ Нужна курсовая?

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Formale Laurentreihe — Die Laurent Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent Reihe in x mit Entwicklungspunkt c diese Gestalt: Dabei sind die an und das …   Deutsch Wikipedia

  • Dirichlet-Reihe — Dirichletreihen sind Reihen, die in der analytischen Zahlentheorie verwendet werden, um zahlentheoretische Funktionen mit Methoden aus der Analysis, insbesondere der Funktionentheorie zu untersuchen. Viele offene zahlentheoretische… …   Deutsch Wikipedia

  • Dirichlet-Reihen — Dirichletreihen sind Reihen, die in der analytischen Zahlentheorie verwendet werden, um zahlentheoretische Funktionen mit Methoden aus der Analysis, insbesondere der Funktionentheorie zu untersuchen. Viele offene zahlentheoretische… …   Deutsch Wikipedia

  • Euler-Produkt — Dirichletreihen sind Reihen, die in der analytischen Zahlentheorie verwendet werden, um zahlentheoretische Funktionen mit Methoden aus der Analysis, insbesondere der Funktionentheorie zu untersuchen. Viele offene zahlentheoretische… …   Deutsch Wikipedia

  • Eulerprodukt — Dirichletreihen sind Reihen, die in der analytischen Zahlentheorie verwendet werden, um zahlentheoretische Funktionen mit Methoden aus der Analysis, insbesondere der Funktionentheorie zu untersuchen. Viele offene zahlentheoretische… …   Deutsch Wikipedia

  • L-Reihe — Dirichletreihen sind Reihen, die in der analytischen Zahlentheorie verwendet werden, um zahlentheoretische Funktionen mit Methoden aus der Analysis, insbesondere der Funktionentheorie zu untersuchen. Viele offene zahlentheoretische… …   Deutsch Wikipedia

  • Laurent-Entwicklung — Die Laurent Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent Reihe in x mit Entwicklungspunkt c diese Gestalt: Dabei sind die an und das …   Deutsch Wikipedia

  • Laurent Reihe — Die Laurent Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent Reihe in x mit Entwicklungspunkt c diese Gestalt: Dabei sind die an und das …   Deutsch Wikipedia

  • Laurentreihe — Die Laurent Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent Reihe in x mit Entwicklungspunkt c diese Gestalt: Dabei sind die an und das …   Deutsch Wikipedia

  • Laurentreihen — Die Laurent Reihe (nach Pierre Alphonse Laurent) ist eine unendliche Reihe ähnlich einer Potenzreihe, aber zusätzlich mit negativen Exponenten. Allgemein hat eine Laurent Reihe in x mit Entwicklungspunkt c diese Gestalt: Dabei sind die an und das …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”